Synthesis and Characterization of Quinone-Substituted Octaalkyl Porphyrin Monomers and Dimers

Jonathan L. Sessler, ${ }^{*, \dagger}$ Martin R. Johnson, ${ }^{\dagger}$ Stephen E. Creager, ${ }^{\dagger}$ James C. Fettinger, ${ }^{\dagger}$ and James A. Ibers*,t
Contribution from the Departments of Chemistry, University of Texas at Austin, Austin. Texas 78712, and Northwestern University, Evanston, Illinois 60208. Received April 17, 1990

Abstract

The synthesis and characterization of a variety of selectively metalated quinone-substituted zinc-containing octaalkyl porphyrin dimers, designed to mimic certain key electronic and structural aspects of the photosynthetic reaction centers of Rhodopseudomonas viridis and Rhodobacter sphaeroides, and appropriate control monomers and dimers are described. These new compounds have been characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, UV-visible spectroscopy, mass spectrometry, and microanalysis. Electrochemical data are also given for representative dimers and monomers and X-ray structural information is provided for a 1,3-phenyl-linked and a 1,4-phenyl-linked functionalized copper-containing dimer ($\mathrm{Cu}_{2} \cdot 5 \mathrm{and} \mathrm{Cu}_{2} \cdot 9$, respectively) and for a quinone-substituted metal-free monomer ($\mathrm{H}_{2} \cdot \mathbf{2 0}$). Crystallographic data for $\mathrm{H}_{2} \cdot \mathbf{2 0}$ is as follows: monoclinic, $P 2_{1} / c, a$ $=8.241(6), b=30.34(3), c=13.502(12) \AA, \beta=92.86(1)^{\circ}, t=-162^{\circ} \mathrm{C}, Z=4, R(F)=0.069, \mathrm{NV}=434$, $\mathrm{NO}=5894$. Crystallographic data for $\mathrm{Cu}_{2} \cdot 5 \cdot\left(1.5 \mathrm{CHCl}_{3}\right) \cdot\left(0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$ is as follows: triclinic, $P \overline{1}, a=19.015(4), b=19.043(6), c=$ 12.957 (5) $\AA, \alpha=109.90(2)^{\circ}, \beta=108.84(2)^{\circ}, \gamma=101.86(2)^{\circ}, t=-162^{\circ} \mathrm{C}, Z=2, R(F)=0.085, \mathrm{NV}=1015$, NO $=$ 11574. Crystallographic data for $\mathrm{Cu}_{2} \cdot 9 \cdot\left(2 \mathrm{CHCl}_{3}\right)$ is as follows: triclinic, $P \overline{1}, a=12.036(3), b=12.762$ (3), $c=14.353$ (3) $\AA, \alpha=94.64(1)^{\circ}, \beta=103.54(1)^{\circ}, \gamma=104.68(1)^{\circ}, t=-115^{\circ} \mathrm{C}, Z=1$ (molecule has a crystallographically imposed center of symmetry), $R(F)=0.067, \mathrm{NV}=505, \mathrm{NO}=8318$.

At present, the bacterial photosynthetic reaction centers are the only membrane-bound electron-transfer proteins for which highly refined crystal structures exist. Thus, much of our current understanding of complex multi step electron transfer processes derives from studies of these systems. ${ }^{1}$ To date, two reaction centers, those from Rhodopseudomonas viridis ${ }^{2}$ and Rhodobacter sphaeroides, ${ }^{3}$ have been characterized structurally. Six tetrapyrrolic subunits are found at these two very similar active sites: A dimeric bacteriochlorophyll "special pair" (P), two "accessory" bacteriochlorophylls (Bchls), and two bacteriopheophytins (Bphs), all held in a well-defined but skewed geometry along a C_{2} axis of symmetry. The Bchls are separated from the P by center-tocenter distances of ca. $11 \AA$ and interplane angles of ca. 70°. The Bphs in turn are separated by similar distances and angles from the Bchls. Four of these six prosthetic groups are currently considered to define the relevant electron transport chain. ${ }^{164,4,5}$ This consists in sequence of the P photosensitizer, an "accessory" Bchl, an intermediate Bph, and a quinone acceptor (Q). In R. sphaeroides, Q is an ubiquinone; in R. viridis, it is a menaquinone. In both cases. Q lies roughly 13-14 \AA away from the corresponding Bph center. Charge separation between the P^{*} and Bph entities is known to occur on a time scale of 2-4 ps^{6-9} with nearly 100% quantum efficiency. ${ }^{\text {Ib,c }}$ Furthermore this process exhibits activationless behavior, increasing in rate by a factor of 2 at liquid helium temperature. ${ }^{6.10}$ The resulting $\mathrm{P}^{+}-\mathrm{Bchl}^{-\mathrm{Bph}^{-}}$chargeseparated state can exist stably for a long period of time; in the normal course of events in vivo, a subsequent irreversible electron transfer to give P^{+}-Bchl-Bph-Q ${ }^{-}$occurs in 200 ps , also with 100% quantum yield. ${ }^{\text {tc }}$

In spite of the availability of the above structural and kinetic information, many mechanistic aspects of bacterial photosynthesis, including the rapid, activationless, and efficient nature of the initial charge separation process, remain poorly understood. ${ }^{1}$ One of the most significant issues currently being debated concerns the role of the "intermediate" or "accessory" Behl. Recent subpicosecond transient absorption experiments have failed to provide any evidence that a $\mathrm{P}^{+}-\mathrm{Bchl}{ }^{-}$state acts as a discrete intermediate in the initial $\mathbf{P}^{*}-\mathrm{Bchl}-\mathrm{Bph} \rightarrow \mathrm{P}^{+}-\mathrm{Bph}-\mathrm{Bph}^{-}$charge separation process. ${ }^{\text {n-9 }}$ Nonctheless, it seems unlikely that the electron traverses the ca. $10 \AA$ edge-to-edge distance from the \mathbf{P} to the

[^0]Bph in a few picoseconds without the Bchl playing an important role. One explanation, which has been formulated in various guises ${ }^{11}$ and for which some experimental evidence has recently been presented. ${ }^{12}$ involves a two-step sequential electron transfer, in which an intermediate Bchl^{-}(or Bph^{+}) species is actually formed but is not observable, decaying faster than it is observed. Another alternative is that the Bchl facilitates transfer to the Bph via a "superexchange" mechanism that involves a quantum mechanical mixing of a virtual $\mathrm{P}^{+}-\mathrm{Bchl}^{-}$state with the photoexcited dimer, $P^{*} \cdot{ }^{13-15}$ There has been much controversy (but no definitive
(1) For reviews, see: (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265-322. (b) Windsor, M. W. J. Chem. Soc. Farad. Trans. 2 1986, 82, 2237-2243. (c) Kirmaier, C.; Holten, D. Photosyn. Res. 1987, 13 , 225-260. (d) Feher, G.; Allen, J. P.; Okamura, M. Y.; Rees, D. C. Nature 1989, 339, 111-116. (e) Huber, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 848-869.
(2) (a) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. J. Mol. Biol. 1984, 180, 385-398. (b) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. Nature 1985, 3/8, 618-624. (c) Deisenhofer, J.; Michel, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 829-847.
(3) (a) Chang, C.-H.; Schiffer, M.; Tiede, D.; Smith, U.; Norris, J. J. Mol. Biol. 1985, 186, 201-203. (b) Allen, J. P.; Feher, G.; Yeates, T. O.; Komiya, H.; Rees, D. C. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5730-5734. (c) Allen, J. P.; Feher, G.; Yeates, T. O.; Komiya, H.; Rees, D. C. Proc. Natl. Acad. Sci.U.S.A. 1987, 84, 6162-6166.
(4) Kirmaier, C.; Holten, D.; Parson, W. W. Biochim. Biophys. Acta 1985, 810, 49-61.
(5) Bocian, D. F.; Boldt. N. J.; Chadwick, B. W.; Frank, H. A. FEBS Lett. 1987, 214, 92-96.
(6) Woodbury, N. W.; Becker, M.; Middendorf, D.; Parson, W. W. Biochemistry 1985, 24, 7516-7521.
(7) (a) Marinn, J.-L.; Breton, J.; Hoff, A. J.; Migus, A.; Antonetti, A. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 957-961. (b) Breton, J.; Martin, J.-L.; Migus, A.; Anlonetti, A.; Orszag, A. Proc. Natl. Acad. Sci. U.S.A. 1986, 83 5121-5125. (c) Breton, J.; Martin, J.-L.; Fleming, G. R.; Lambry, J.-C. Biochemistry 1988, 27, 8276-8284.
(8) Wasielewski, M. R.; Tiede, D. M. FEBS Lett. 1986, 204, 368-372.
(9) Kirmaier, C.; Holten, D. FEBS Lett. 1988, 239, 211-218.
(10) Fleming, G. R.: Martin, J. L.; Breton, J. Nature 1988, 333, 190-192
(11) (a) Fischer, S. F.; Scherer, P. O. J. Chem. Phys. 1987, 115, 151-158 (b) Marcus, R. A. Chem. Phys. Lett. 1988, 146, 13-22.
(12) Holzapfel, W.; Finkele, U.; Kaiser, W.; Oesterhelt, D.; Scheer, H.; Stilz, H. U.; Zinth, W. Chem. Phys. Lett. 1989, 160, 1-7.
(13) Marcus, R. A. Chem. Phys. Lett. 1987, 133, 471-477

1. $A=A, R=H$
2. $A r=A, R=H$
3. $A r=B, R=C H_{3}$

4. $A_{r}=A, R=C$
5. $A r=A, R=C$
6. $A_{r}=A$. $R=D$
7. $A r=B$. $R=D$
8. $A r=A, R=E$
9. $A f=B, R=F$

10. $R=C$
11. $R=D$

12. $R=$ pheryl
13. $A=D$

Figure 1. New porphyrins prepared for this study. In the text, a simple bold-face number is used to refer to the generalized forms of these compounds, whereas the prefixes $\mathrm{H}_{2}, \mathrm{Zn}$, and Cu are used to denote, respectively, the free-base, zinc(II), and copper(II) forms of each porphyrin monomer or dimer subunit. Thus, for instance. a designation $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ refers to the monozinc complex of the free-base dimer $\mathrm{H}_{4} \cdot 10$ in which the zinc(11) cation is bound in the porphyrin macrocycle adjacent (or "proximal") to the quinone subunit, whereas the designation $\mathrm{ZnH}_{2} \cdot 10$ refers to the corresponding regioisomer in which the single zine(11) cation is bound in the porphyrin distant (or "distal") from the quinone.
resolution) as to whether this latter mechanism is consistent with all the available experimental observations and, as a result, extensive experimental and theoretical efforts continue. Another potentially informative approach involves the study of suitable model systems.

In recent years, many model compounds have been prepared in an effort to understand further the natural photosynthetic systems. ${ }^{16}$ Some of these, such as porphyrin-free donor-acceptor dimers, ${ }^{17.18}$ bicyclooctane-bridged systems, ${ }^{19.20}$ and capped sys-

[^1]tems, ${ }^{21-26}$ as well as numerous other linked systems, ${ }^{27-29}$ have proved useful in exploring how various factors, such as dis-
(18) (a) Pasman, P.; Rob, F.; Verhoeven, J. W. J. Am. Chem. Soc. 1982, 104, 5127-5133. (b) Heitele, H.; Michel-Beyerle, M. E. J. Am. Chem. Soc. 1985, 107, 8286-8288. (c) Warman, J. M.; De Haas, M. P.; Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Oliver, A. M.; Hush, N. S. Chem. Phys. Lelt. 1986, 128, 95-99. (d) Oevering, H.; Verhoeven, J. W.; PaddonRow, M. N.; Costaris, E.; Hush, N. S. Chem. Phys. Lett. 1988, 143, 488-495.
(19) (a) Joran, A. D.; Leland, B. A.; Geller, G. G.; Hopfield, J. J.; Dervan, P. B. J. Am. Chem. Soc. 1984, 106, 6090-6092. (b) Leland, B. A.; Joran, A. D.; Felker, P. M.; Hopfield, J. J.; Zewail, A. H.; Dervan, P. B. J. Phys. Chem. 1985, 89, 5571-5573. (c) Joran, A. D.; Leland, B. A.; Felker, P. M.; Zewail, A. H.; Hopfield, J. J.; Dervan, P. B. Nature (London) 1987, 327 , 508-511. (d) Joran, A. D. Doctoral Dissertation, California Institute of Technology, 1986. (e) Leland, B. A. Doctoral Dissertation, California Institute of Technology, 1987.
(20) Bolton, J. R.; Ho, T.-F.; Liauw, S.; Siemiarczuk, A.; Wan, C. S. K.; Weedon, A. C. J. Chem. Soc., Chem. Commun. 1985, 559-560.
(21) (a) Weiser, J.; Staab, H. A. Angew. Chem., Int. Ed. Engl. 1984, 23, 623-625. (b) Kricger, C.; Weiser, J.; Staab, H. A. Tetrahedron Lett. 1985, 6055-6058. (c) Weiser, J.; Staab, H. A. Tetrahedron Lett. 1985, 6059-6062. (d) Mauzerall, D.; Weiser, J.; Staab, H. Tetrahedron 1989, 45, 4807-4814.
(22) Morgan, B.; Dolphin, D. Angew. Chem., Int. Ed. Engl. 1985, 24, 1003-1004.
(23) (a) Lindsey, J. S.; Mauzerall, D. C. J. Am. Chem. Soc. 1982, 104, 4498-4500. (b) Lindscy, J. S.; Mauzerall, D. C.; Linschitz, H. J. Am. Chem. Soc. 1983, 105, 6528-6529. (c) Lindsey, J. S.; Delancy, J. K.; Mauzerall, D. C.; Linschis, H. J. Am. Chem. Soc. 1988, 110, 3610-3621. (d) Delaney, J. K.; Mauzerall, D. C.; Lindsey, J. S. J. Am. Chem. Soc. 1990, 112, 957-963.
(24) (a) Leighton, P.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1985, 24-25. (b) Irvine, M. P.; Harrison, R. J.; Beddard, G. S.; Leighton, P.: Sanders, J. K. M. Chem. Phys. 1986, 104, 315-324. (c) Harrison, R. J.; Pearce, B.: Beddard, G. S.; Cowan. J. A.; Sanders, J. K. M. Chem. Phys. 1987, 116, 429-448.
(25) (a) Osuka, A.; Furuta, H.; Maruyama, K. Chem. Lett. 1986, 479-482. (b) Osuka, A.; Maruyama, K. J. Chem. Res. (S) 1987, 286-287. (c) Osuka, A.; Maruyama, K.; Hirayama, S. Tetrahedron 1989, 45 , 4815-4830.

Scheme 1. Synthesis of Pyrrolic Precursors
A.

Reagents: (a) $\mathrm{Pb}(\mathrm{OAC})_{4} / \mathrm{HOAc}$. (b) $\mathrm{HCl} / 90 \% \mathrm{EtOH} /$ reflux. (c) $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} /$ reflux. (d) $\mathrm{POCl} / \mathrm{DMF} /-20$ to $0^{\circ} \mathrm{C}$. (e) $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$. (f) $\mathrm{HCl} / 95 \% \mathrm{EtOH} /$ /reflux. (g) $\mathrm{NaOH} /\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} / 180-195^{\circ} \mathrm{C}$.
tance, ${ }^{19-25}$ donor-acceptor orientation ${ }^{28 \mathrm{c}}$ and energetics, ${ }^{19 c, 24,296}$ and solvent ${ }^{20,24,27,286,296}$ mediate photoinduced electron-transfer reactions. Other models, ${ }^{30-32}$ such as triads ${ }^{30}$ and triptycene-

[^2]derived systems. ${ }^{34}$ exhibit interesting charge separation properties. In all cases, however, there are substantial differences between the models and the actual reaction centers. Indeed, with rare exceptions, ${ }^{33-36}$ all the photosynthetic model systems reported to date have consisted of a simple monomeric porphyrin substituted with one or more acceptors, ${ }^{37}$ and none, to our knowledge, has
(31) Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B. J. Am. Chem. Soc. 1985, 107, 5562-5563.
(32) Nishitani, S.; Kurata, N.; Sakata, Y.; Karen, A.; Okada, T.; Misumi, S.; Mataga, N. J. Am. Chem. Soc. 1983, 105, 7771-7772.
(33) (a) Sakata, Y.; Nishitani, S.; Nishimizu, N.; Misumi, S.; McIntosh, A. R.; Bollon, J. R.; Kanda, Y.; Karen, A.; Okada, T.; Mataga, N. Tetrahedron Lett. 1985, 5207-5210. (b) Osuka, A.; Maruyama, K.; Yamazaki, 1.; Tamai, N. Chem. Phys. Lett. 1990, 165, 392-396.
(34) (a) Cowan, J. A.; Sanders, J. K. M.; Beddard, G. S.; Harrison, R. J. J. Chem. Soc., Chem. Commun. 1987, 55-58. (b) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1988, 692-694. (c) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1988, 694-696. (d) Anderson, H. L.; Hunter, C. A.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1989, 226-227.
(35) (a) Gusı, D.; Moore, T. A.; Moore, A. L.; Makings, L. R.; Seely, G. R.; Ma, X.; Trier, T. T.; Gao, F. J. Am. Chem. Soc. 1988, Il0, 7567-7569. (b) Gust, D.; Moorc, T. A.; Moore, A. L.; Seely, G. R.; Liddell, P.; Barrett, D.; Harding, L. O.; Ma, X. C.; Lee, S.-J.; Gao, F. Tetrahedron 1989, 45, 4867-4892.
(36) (a) Sessler, J. L.; Johnson, M. R.; Lin, T.-Y.; Creager, S. E. J. Am. Chem. Soc. 1988, lio, 3659-3661. (b) Sessler, J. L.; Johnson, M. R. Recueil 1987, 106, 222. (c) Sessler, J. L.; Piering, S. Tetrahedron Lett. 1987, 6569-6572. (d) Scsslcr, J. L.; Johnson, M. R. Angew. Chem., Int. Ed. Engl. 1987, 26, 678-680. (e) Sessler, J. L.; Johnson, M. R.; Lin, T.-Y. Tetrahedron 1989, 45, 4767-4784. (f) Sessler, J. L.; Johnson, M. R.; Creager, S. E.; Fettinger, J.; Ibers, J. A.; Rodriguez, J.; Kirmaier, C.; Holten, D. In Photobiology: The Science and its Applications; Riklis, E., Ed.; Plenum: New York, in press. (g) Rodriguez, J.; Kirmaier, C.; Scssler, J. L.; Johnson, M. R.: Friesner, R. A.; Holten, D., submitted to J. Am. Chem. Soc.
lent itself to the study of possible porphyrin-mediated superexchange. ${ }^{38}$ In addition, only one of the model systems reported to date ${ }^{216}$ has been characterized structurally. ${ }^{39}$ We thus sought to prepare a series of structurally characterized, energetically defined multicomponent photosynthetic models that would be suitable for the study of long-range photoinduced electron-transfer effects under carefully controlled conditions, and that might allow the question of superexchange to be addressed in well-tailored experiments. In the present paper, we report the synthesis and characterization of several new porphyrin monomers and dimers, including the selectively metalated, quinone-substituted "gable" and "flat" dimers $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$ which incorporate the three key biomimetic components: (1) free-base porphyrin photosensitizer, (2) metalloporphyrin intermediate, and (3) quinone acceptor. Elsewhere ${ }^{36, \text { er. }} 8$ we discuss the results of detailed static fluoreseence quenching and transient femtosecond absorption studies carried out with these and related control systems (e.g. $\mathrm{H}_{2} \mathrm{Zn} \cdot 1, \mathrm{ZnH}_{2} \cdot 8, \mathrm{ZnH}_{2} \cdot 10, \mathrm{ZnH}_{2} \cdot 11, \mathrm{H}_{2} \cdot 17$, and $\mathrm{Zn} \cdot 17$) and present evidence for the observation of apparent superex-change-mediated electron transfer in well-defined photosynthetic model systems. Aspects of this work have been communicated earlier. ${ }^{36 a . f}$

Results and Discussion

A graphical summary of the newly synthesized porphyrin compounds reported here is given in Figure 1. The free-base forms of these systems were obtained from pyrrolic precursors with use of the general method of Arsenault et al. ${ }^{40}$ as modified by Chang and co-workers; ${ }^{41-43}$ they were characterized by a variety of means including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV-visible spectroscopy, mass spectrometry, microanalysis, cyclic voltammetry, and, in the specific cases of $\mathrm{H}_{2} \cdot 20$ and the bis-copper chelates of 5 and 9 , X-ray diffraction analyses. As appropriate, zinc(11) insertions were then effected from zinc acetate with the selectively monometalated porphyrin dimer complexes $\mathrm{H}_{2} \mathrm{Zn} \cdot \mathbf{1}, \mathrm{H}_{2} \mathrm{Zn} \cdot 2, \mathrm{H}_{2} \mathrm{Zn} \cdot 3$, $\mathrm{H}_{2} \mathrm{Zn} \cdot 4, \mathrm{ZnH}_{2} \cdot 10, \mathrm{H}_{2} \mathrm{Zn} \cdot 10, \mathrm{ZnH}_{2} \cdot 11$, and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$ being obtained as the result of regioselective metal binding "titrations".
(37) A number of acceptor-free oligomeric tetrapyrrolic systems are also known. See for instance: (a) Tabushi, l.; Sasaki, T. Tetrahedron Lett. 1982, 23, 1913-1916. (b) Tabushi, I.; Sasaki, T. J. Am. Chem. Soc. 1983, 105, 2901-2902. (c) Tabushi, 1.; Kugimiya, S.-1.; Kinnaird, M. G.; Sasaki, T. J. Am. Chem. Soc. 1983, 107, 4192-4199. (d) Fujita, I.; Netzel, T. L.; Chang, C. K.; Wang, C.-B. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 413-417. (e) Netzel, T. L.; Bergkamp, M. A.; Chang, C. K. J. Am. Chem. Soc. 1982, 104, 1952-1957. ($)$ Gückel, F.; Schweitzer, D.; Collman, J. P.; Bencosme, S.; Evitt, E.; Sessler, J. Chem. Phys. 1984, 86, 161-172. (g) Heiler, D.: McLendon, G.; Rogalskyj, P. J. Am. Chem. Soc. 1987, 109, 604-606. (h) Boxer, S. G.; Bucks, R. S. J. Am. Chem. Soc. 1979, 101, 1883-1885. (i) Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A. Tetrahedron Lett. 1982, 3215-3218. (j) Dubowchik, G. M.; Hamilton, A. D. J. Chem. Soc., Chem. Commun 1986, 665-666. (k) Dubowchik, G. M.; Hamilton, A. D. J. Chem Soc., Chem. Commun. 1986, 1391-1394. (l) Dubowchik, G. M.; Hamilton, A. D. J. Chem. Soc., Chem. Commun. 1987, 293-295. (m) Osuka, A.; Maruyama, K.; Tomita, H. Chem. Lett. 1988, 1205-1208. (n) Reference deleted in proof. (o) Osuka, A.; Maruyama, K.; Tamai, N.; Yamazaki, I. J. Chem. Soc., Chem. Comm. 1988, 1243-1245. (p) Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1988, Il0, 4454-4456. (q) Osuka, A.; Ida, K.; Maruyama, K. Chem. Lett. 1989, 741-744. (r) Osuka, A.; Furuta, H.; Maruyama, K. Chem. Lett. 1986, 479-482. (s) Osuka, A.; Maruyama, K. Chem. Lett. 1987, 825-828. (t) Chardon-Noblat, S.; Sauvage, J.-P.; Mathis, P. Angew. Chem., Int. Ed. Engl. 1989, 28, 593-594. (u) Meier, H.; Kobuke, Y.; Kugimiya, S.-i. J. Chem. Soc., Chem. Commun. 1989, 923-924
(38) For apparent examples of superexchange electron transfer in non-porphyrin-mediated systems see refs $17 \mathrm{~h}, 18 \mathrm{~b}, 18 \mathrm{~d}$, and 30 c . See, also: Wasielweski. M. R.; Niemczyk. M. P.; Johnson, D. G.; Svee, W. A.: Minsek, D. W. Tetrahedron 1989, 45, 4785-4806.
(39) During the course of preparing this manuscript, an X-ray crystal structure of a bis-zinc complex of a phenothroline-linked "gable"-type porphyrin dimer was obtained by Prof. J.-P. Sauvage, Dr. C. Pascard, and coworkers. Sce: Chardon-Noblat, S. Ph.D. Thesis, Universite Louis Pasteur de Strasbourg, 1989.
(40) Arsenault, G. P.; Bullock, E.; MacDonald, S. F. J. Am. Chem. Soc. 1960, 82, 4384-4396
(41) Chang, C. K.; Abdalmuhdi, 1. J. Org. Chem. 1983, 48. 5388-5390.
(42) Chang, C. K.: Abdalmuhdi, I. Angew. Chem., Int. Ed. Engl. 1984, 23, 164-165.
(43) Eaton, S. S.; Eaton, G. R.; Chang, C. K. J. Am. Chem. Soc. 1985, 107. 3177-3184.

Scheme II. Synthesis of the Gable Monoquinone $\mathrm{H}_{4} \cdot \mathbf{1 0}$

The resulting complexes were characterized by optical and ${ }^{1} \mathrm{H}$ NMR spectroscopy, as well as, in certain cases, cyclic voltammetric means. Details of this chemistry are discussed in the subsections that follow.
Synthesis of Dipyrromethane Precursors. The synthetic route used to obtain the precursor dipyrromethanes 24-25 is given in Scheme I. Non-phenyl-containing dipyrromethanes 28-33 (Scheme Ia) were made from pyrrolic starting materials (e.g. 25 and 27) by modifications of literature methods. ${ }^{44}$ Since the synthetic transformations involved are straightforward, details of this chemistry are not given in the Experimental Section. They are, however, included in the supplementary material accompanying this paper.

The key starting pyrrole $\mathbf{2 3}$ used to prepare precursors 34-45 (vide infra) was made by the general method outlined by Barton and Zard. ${ }^{45}$ This elegant new process makes possible the routine preparation of 23 in 100 g batches. Unsubstituted pyrroles such as $\mathbf{2 3}$ were previously available only through a more lengthy route. ${ }^{46}$ Full details of the new procedure are therefore provided in the Experimental Section.

The acid-catalyzed condensation of $\mathbf{2 3}$ with isophthalaldehyde, terephthalaldehyde, benzaldehyde, 2,5-dimethoxybenzaldehyde, or 2,4,6-trimethoxybenzaldehyde in 95% ethanol with an acid catalyst gave dipyrromethane esters $37,39,41,34$, and 43, respectively, as shown in Scheme 1, parts b-d. The control compound $\mathbf{4 1}$ and its decarboxylated derivative $\mathbf{4 2}$ have been prepared previously. ${ }^{41}$ Compounds $\mathbf{3 7}, \mathbf{3 9}$, and 41 were isolated directly as powders and subsequently were decarboxylated by heating at reflux in boiling ethylene glycol containing NaOH , to afford 38, 40 , and 42 in overall yields $>80 \%$. The intermediate esters 34 and 43 did not precipitate but formed glasses or syrups. Con-
(44) Sessler, J. L.; Hugdahl, J.; Johnson, M. R. J. Org. Chem. 1986, 5l, 2838-2840 and references ciled therein.
(45) (a) Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Comm. 1985, 1098-1100. (b) Ono, N.; Maruyama, K. Chem. Lett. 1988, 1511-1514. (c) Sessler, J. L.; Mozaffari, A.; Johnson, M. R. Org. Synth., in press.
(46) (a) Archibald, J. L.; Walker, D. M.; Shaw, K. B.; Markovac, A.; MacDonald, S. F. Can. J. Chem. 1966, 44, 345-362. (b) Franck, B.; Bringmann, G.; Wegner, C.; Spiegel, U. Justus Liebigs Ann. Chem. 1980, 263-274.
sequently these presumed intermediates were not isolated but were saponified and decarboxylated in situ to give 35 and 44 in 97% and 94% overall yields, respectively. When compound 35 was treated with POCl_{3} in cold DMF, the expected Vilsmier salt did not precipitate even when the temperature was lowered to - 20 ${ }^{\circ} \mathrm{C}$. The solution was therefore poured into water, basified, and treated with methanol to give product 36 in 95% yield. The corresponding aldchyde $\mathbf{4 5}$ was obtained in $\mathbf{3 7 \%}$ yield from a similar procedure.

Synthesis of Porphyrins. Monomeric porphyrins $\mathrm{H}_{2} \cdot 18$ and $\mathrm{H}_{2} \cdot 21$ were prepared by condensation of an α-free dipyrromethane with the appropriate dipyrromethane aldehyde. ${ }^{40-43}$ Thus, dialdehyde 36 was condensed with the α-free dipyrromethanes 29 or $\mathbf{4 2}$ in methanol with a catalytic amount of perchloric acid, neutralized with NaOAc , and oxidized with o-chloranil to yield $\mathrm{H}_{2} \cdot 21$ and $\mathrm{H}_{2} \cdot 18$. respectively, in $40-78 \%$ yield. Demethylation of $\mathrm{H}_{2} \cdot 21$ and $\mathrm{H}_{2} \cdot 18$ with BBr_{3} in dichloromethane at room temperature followed by quenching with methanol and subsequent purification by chromatography on silica gel gave hydroquinones $\mathrm{H}_{2} \cdot 22$ and $\mathrm{H}_{2} \cdot 19$. Subsequent oxidation with 1,2-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded the quinone-substituted porphyrins $\mathrm{H}_{2} \cdot 20$ and $\mathrm{H}_{2} \cdot 17$ in $60-80 \%$ yield. The unsubstituted monomeric porphyrin $\mathrm{H}_{2} \cdot 16$ was made in a similar fashion by condensing equimolar amounts of the α-free dipyrromethane 42 with aldehyde 30 under conditions analogous to those described above.
Bis (quinonylporphyrinyl)benzenes $\mathrm{H}_{4} \cdot 3$ and $\mathrm{H}_{4} \cdot 4$, the synthesis of which has been communicated earlier, ${ }^{36 d}$ were obtained in a stepwise process analogous to the one used to obtain the phenyl quinone monomer, $\mathrm{H}_{2} \cdot 17$. In these procedures, aldehyde 36 was condensed ${ }^{40-43}$ with dipyrromethanes 38 or $\mathbf{4 0}$ to give dimeric porphyrins $\mathrm{H}_{4} \cdot 5$ and $\mathrm{H}_{4} \cdot 6$, respectively. These were then demethylated with BBr_{3} to give the corresponding bis-hydroquinones $\mathrm{H}_{4} \cdot 7$ and $\mathrm{H}_{4} \cdot 8$. Subsequent oxidation with DDQ then gave the bis-quinone dimers $\mathrm{H}_{4} \cdot 3$ and $\mathrm{H}_{4} \cdot 4$.

The pathway to the gable monoquinone dimer, $\mathrm{H}_{4} \cdot 10$, is shown in Scheme II. The synthesis of the key precursor, the dimeth-oxyphenyl-substituted bisporphyrinylbenzene, $\mathrm{H}_{4} \cdot 12$, is the same as that described earlier for the gable porphyrin $\mathrm{H}_{4} \cdot 1^{14}$ except that dialdehyde 36 is added to the condensation mixture. Thus, a $1: 1: 1$ mixture of precursors 36.30 , and 38 in methanol/THF/1\% HClO_{4} gave after workup roughly equal amounts of the nonsubstituted gable porphyrin $\mathrm{H}_{4} \cdot 1$, the monosubstituted system $\mathrm{H}_{4} \cdot 12$, and the disubstituted dimer $\mathrm{H}_{4} \cdot 5$ in an overall yield of $7-9 \%$, along with some monomeric byproducts. The zinc chelates of the porphyrin products were prone to demetalation under the separation conditions (silica gel column, $\mathrm{CCl}_{4} / \mathrm{CHCl}_{3}$ eluent). so the crude reaction mixture was treated instead with copper acetate prior to column chromatography. The resulting copper chelates were much more resistant to demetalation on silica, and, having higher migratory aptitudes than the free-base systems, were easier to purify by column chromatography. Separation of the three main products $\mathrm{Cu}_{2} \cdot 1, \mathrm{Cu}_{2} \cdot 12$, and $\mathrm{Cu}_{2} \cdot 5$ from each other on silica required a solvent mixture of $\mathrm{CHCl}_{3}(12.5 \%)$ and $\mathrm{CCl}_{4}(87.5 \%)$ rather than pure CHCl_{3} (which caused $\mathrm{Cu}_{2} \cdot 1$ and $\mathrm{Cu}_{2} \cdot 12$ to run together at the solvent front). The copper was removed by treatment with concentrated sulfuric acid, yielding the free base porphyrins $\mathrm{H}_{4} \cdot 1, \mathrm{H}_{4} \cdot 12$, and $\mathrm{H}_{4} \cdot 5$, after workup and chromatographic purification. Compound $\mathrm{H}_{4} \cdot 12$ was then demethylated as before to give $\mathrm{H}_{4} \cdot 14$ and oxidized with DDQ to give $\mathrm{H}_{4} \cdot 10$.

The analogous flat models $\mathrm{H}_{4} \cdot \mathbf{2}, \mathrm{H}_{4} \cdot 13$, and $\mathrm{H}_{4} \cdot 6$ were prepared by routes similar to those used to obtain $\mathrm{H}_{4} \cdot 1, \mathrm{H}_{4} \cdot 12$, and $\mathrm{H}_{4} \cdot 5$. For $\mathrm{H}_{4} \cdot 13$ and $\mathrm{H}_{4} \cdot 6$, the resulting products were then carried on through the hydroquinones $\mathrm{H}_{4} \cdot 15$ and $\mathrm{H}_{4} \cdot 8$ to give the quinonesubstituted targets $\mathrm{H}_{4} \cdot 11$ and $\mathrm{H}_{4} \cdot 4$. For the flat series, a diformyl butyl-substituted dipyrromethane 33. rather than a propyl dipyrromethane (i.e. 30), was used in all but the first series of exploratory porphyrin condensations. This is because the bu-tyl-substituted porphyrins showed better solubility characteristics compared to the propyl-substituted systems and this extra solubility proved crucial in the flat series. The propyl-substituted porphyrins were, however, casier to separate by column chromatography.

Table 1. Summary of Bond Distances (\AA) and Angles (deg) in $\mathrm{H}_{2}, 20$

$\mathrm{N}-\mathrm{C}_{\mathrm{a}}$ (avg) ${ }^{\text {a.b }}$	1.378 (8)	$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{m}}$ (avg)	1.393 (12)
$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}$ (avg)	1.456 (13)	$\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\alpha}$ (avg)	1.508 (14)
$\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{b}}$ (avg)	1.364 (5)		
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.499(4)$		
$\mathrm{N}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}{ }^{c}$	$107.7(3)-111.3(3)$	$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{b}}$	106.3 (3)-108.3(3)
$\mathrm{N}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{m}}$	$122.9(3)-126.7(3)$	$\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{m}}$	$122.2(3)-129.5(3)$
$\mathrm{C}_{\mathrm{a}}-\mathrm{N}-\mathrm{C}_{\mathrm{a}}$	$105.5(3)-108.8(2)$	$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{a}$	124.3 (3)-129.5(3)

"The notation "a", and "b", and "m" is that of Hoard, J. L. In Porphyrins and Metalloporphyrins; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; pp 317-380. ${ }^{6}$ Here, and elsewhere, the estimated standard deviation given in parentheses is the larger of that calculated for an individual observation on the assumption that the values averaged are from the same population or of that calculated for an individual parameter from the inverse leasl-squares matrix. 'Here, and elsewhere, the range of angles of a particular type is listed; in general angles differ significantly and cannot be meaningfully averaged.

Nonetheless, no difficulties were encountered in separating the initial mixtures of $\mathrm{Cu}_{2} \cdot \mathbf{2}, \mathrm{Cu}_{2} \cdot 13$, and $\mathrm{Cu}_{2} \cdot 6$ obtained from the mixed condensations of $\mathbf{4 0}, 33$, and 36.

The flat porphyrin dimer $\mathrm{H}_{4} \cdot 9$ was obtained by condensation of compounds $\mathbf{4 0}$ and $\mathbf{4 5}$ in a similar fashion used to obtain flat dimer $\mathrm{H}_{4} \cdot 6$. The dicopper chelate $\mathrm{Cu}_{2} \cdot \mathbf{9}$, formed in the purification step, gave crystals from chloroform/methanol.
Zinc(II) Complexes. Zinc insertion into the porphyrin monomers $\mathrm{H}_{2} \cdot 16, \mathrm{H}_{2} \cdot 17$, and $\mathrm{H}_{2} \cdot 20$ was readily performed in the usual way, ${ }^{47}$ using zinc acetate in methanol/chloroform, to give $\mathrm{Zn} \cdot 16$. $\mathrm{Zn} \cdot 17$, and $\mathrm{Zn} \cdot 20$ in quantitative yield. Similarly, the bis-zinc complexes of all the dimeric porphyrins reported here could be obtained by treating the free-base with excess zinc acetate. This same general approach (using copper acetate) was also used to prepare the bis-copper complexes of dimers $\mathbf{1 , 2 , 5 , 6 , 9 , 1 2}$, and 13 derived from the mixed condensations described above.

The mono zinc complexes of the symmetrical dimers (e.g. $\mathrm{ZnH}_{2} \cdot \mathbf{1}, \mathrm{ZnH}_{2} \cdot \mathbf{2}, \mathrm{ZnH}_{2} \cdot 3$, and $\mathrm{ZnH}_{2} \cdot 4$) were obtained by "titrating" dilute chloroform solutions of the corresponding free-base porphyrin with ca. 1.3 mol equiv of zinc acetate in methanol and purifying by chromatography on silica gel. Similar titrations were also used to prepare the mono-zinc complexes of the unsymmetrical dimers $\mathrm{H}_{4} \cdot 10$ and $\mathrm{H}_{4} \cdot 11$. Here, however, advantage was taken of the differing electronic (and directing) nature of the single substituent available at the quinone and hydroquinone oxidation levels (ef. Scheme III). Specifically, it was found that if the quinones $\mathrm{H}_{4} \cdot 10$ or $\mathrm{H}_{4} \cdot 11$ are used for the titration, the zinc preferentially inserts into the unsubstituted porphyrin ring away from ("distal to") the quinone, yielding $\mathrm{ZnH}_{2} \cdot 10$ and $\mathrm{ZnH}_{2} \cdot 11$, respectively. However, if hydroquinones $\mathrm{H}_{4} \cdot 14$ or $\mathrm{H}_{4} \cdot 15$ are used instead, the zinc ion preferentially inserts into the nearby (or "proximal") porphyrin ring, yielding $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{H}_{2} \mathrm{Znl1}$, respectively, after oxidation and chromatographic purification. Proton NMR analyses were used to establish these regiochemical assignments; these will be discussed shortly.

Characterization. With the exception of the hydroquinone derivatives, all new porphyrins were characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy, mass spectrometry, UV-visible spectroscopy, and microanalysis. In many cases, satisfactory ${ }^{13} \mathrm{C}$ NMR spectra were also obtained. Additionally, X-ray structures were obtained for three of the new porphyrins: $\mathrm{H}_{2} \cdot \mathbf{2 0} \mathrm{Cu}_{2} \cdot 5$, and $\mathrm{Cu}_{2} \cdot \mathbf{9}$. The porphyrin hydroquinones, with the exception of $\mathrm{H}_{4} \cdot 14$ and $\mathrm{H}_{4} \cdot 15$, were not in general characterized, owing to their poor solubility, but instead were directly oxidized to the corresponding quinones. Hydroquinones $\mathrm{H}_{4} \cdot 14$ and $\mathrm{H}_{4} \cdot 15$, however, were used for selective metal insertions and so were characterized by mass spectrometry as well as by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Description of the Structure of $\mathbf{H}_{2} \cdot \mathbf{2 0}$. A summary of bond distances and angles for $\mathbf{H}_{2} \cdot \mathbf{2 0}$ is given in Table I. A more complete listing is available in Table SI. The molecular geometry and labeling scheme of the porphyrinic core of the $\mathrm{H}_{2} \cdot \mathbf{2 0}$ molecule are shown in Figure 2.
(47) Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier: Amsterdam, 1975; pp 884-885.

Figure 2. The structure of the $\mathrm{H}_{2} \mathbf{2 0}$ molecule. The labeling scheme is given for the non-hydrogen atoms. Thermal ellipsoids are drawn at the 50% level.

Table 11. Summary of Bond Distances (\AA) and Angles (deg) for $\mathrm{Cu}_{2} \cdot 5$

$\mathrm{Cu}-\mathrm{N}$ (avg)	2.000 (2)	$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{m}}$	1.389 (19)
$\mathrm{N}-\mathrm{C}_{\mathrm{a}}$	1.380 (17)	$\mathrm{C}_{\mathrm{m}}-\mathrm{C}_{\alpha}$	1.512 (10)
$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}$	1.444 (17)	$\mathrm{C}_{6}-\mathrm{C}_{a}$	1.519 (20)
$\mathrm{Cb}_{6}-\mathrm{Cb}^{\text {b }}$	1.341 (20)		
$\underset{(\mathrm{cis})}{\mathrm{N}-\mathrm{Cu}-\mathrm{N}}$	87.0 (2)-93.3 (2)	$\mathrm{Ca}_{\mathrm{a}}-\mathrm{N}-\mathrm{Ca}_{\mathrm{a}}$	104.0 (8)-106.1 (5)
$\begin{array}{r} \mathrm{N}-\mathrm{Cu}-\mathrm{N} \\ \text { (trans) } \end{array}$	173.3 (2)-177.0 (2)	$\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{b}}$	105.3 (6)-108.2 (7)
$\mathrm{Cu}-\mathrm{N}-\mathrm{Ca}_{\text {a }}$	122.4 (4)-130.1 (5)	$\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{m}$	121.7 (6)-129.7 (6)
$\mathrm{N}-\mathrm{Ca}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}$	108.4 (7)-112.9 (6)	$\mathrm{C}_{3}-\mathrm{C}_{6}-\mathrm{C}_{\alpha}$	120.4 (6)-131.7 (6)
$\mathrm{N}-\mathrm{Ca}_{\mathrm{a}}-\mathrm{C}_{\mathrm{m}}$	121.1 (6)-126.0 (6)		

The crystal structure of $\mathrm{H}_{2} \cdot \mathbf{2 0}$ consists of the packing of discrete monomeric molecules. There are no unusual intermolecular contacts. The plane of the quinone makes an angle of 83.80° with that of the porphyrin. The center-to-center distance between the porphyrin and quinone subunits is $6.48 \AA$. The porphyrin molecule also contains eight other appendages in addition to the quinone. The four methyl groups, one per pyrrole, lie within $\pm 0.05 \AA$ of their respective pyrrolic planes; the two ethyl groups lie across the porphyrinic plane from each other whereas the two n-propyl groups lie on the same side of the molecular plane.

Centroid calculations (CT = center value of the four nitrogen atom positions) indicate that the porphyrin ring is slightly elongated in the $\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(10)$ direction; the two distinct sets of nonbonding interactions involving the centroid (CT) are (in \AA): $\mathrm{CT}-\mathrm{C}(1)=3.164, \mathrm{CT}-\mathrm{C}(9)=3.121, \mathrm{CT}-\mathrm{C}(11)=3.162$. CT-C(19) $=3.141$, average $=3.147 \AA$; CT-C(4) $=3.019$. СT$\mathrm{C}(6)=3.015, \mathrm{CT}-\mathrm{C}(14)=3.036, \mathrm{CT}-\mathrm{C}(16)=2.992$, average $=3.016 \AA$. This deviation is attributable to the different internal porphyrin ring angles at the meso atoms. These angles are found to occur pairwise: $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) 130.2(3)^{\circ}$ and $\mathrm{C}(14)-\mathrm{C}-$ $(15)-\mathrm{C}(16) 129.8(3)^{\circ}$, average $=130.0^{\circ} ; \mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ $125.9(3)^{\circ}$ and $\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{C}(19) 125.5(3)^{\circ}$, average $=125.7^{\circ}$. There is also a slight ruffling of the porphyrin core, as judged from the best least-squares plane through the 24 -atom segment. The mean deviation is $0.076 \AA$ and the maximum deviation is 0.187 (3) \AA. The remaining bond distances and angles (Table S^{188}) within the porphyrin are normal in all respects, with internal consistency among chemically equivalent bond parameters.

Description of the Structure of $\mathrm{Cu}_{2} \cdot 5 \cdot\left(1.5 \mathrm{CHCl}_{3}\right) \cdot\left(0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$. Selieted bond distances and angles for the $\mathrm{Cu}_{2} \cdot 5 \cdot\left(1.5 \mathrm{CHCl}_{3}\right)$. $\left(0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$ molecule are given in Table 11. Additional data are in Table SII. ${ }^{48}$ The molecular geometry of the $\mathrm{Cu}_{2} \cdot 5$ molecule

[^3]

Figure 3. The structure of the $\mathrm{Cu}_{2} \cdot 5$ molecule. The hydrogen atoms are omitted. The 50% thermal cllipsoids are shown.

Table III. Dihedral Angles (deg) in the Copper Dimers

	$\mathrm{Cu}_{2} 5$	$\mathrm{Cu}_{2} \cdot 9$
Phl-Porla	96.3	93.8
$\mathrm{Phl}-\mathrm{Br}$	41.0	164.6
Ph1-Por 2	119.8	93.8
Ph1-Ph2	66.6	0
Porl-Br	55.4	101.6
Por1-Por2	105.9	0.0
Por1-Ph2	59.9	93.8
Br -Por2	125.0	101.6
$\mathrm{Br}-\mathrm{Ph} 2$	47.5	164.6
Por2-Ph2	77.8	93.8

[^4]is shown in Figure 3. The crystal structure consists of the packing of discrete $\mathrm{Cu}_{2} \cdot 5$ molecules, 5 -fold disordered chloroform molecules, half-occupancy 2 -fold disordered chloroform molecules, and half-occupancy methanol molecules; there are no abnormally short interatomic contacts. Bond distances and angles within the $\mathrm{Cu}_{2} \cdot 5$ molecule are considered normal. The porphyrin cores are both S_{4}-ruffled. The mean deviation from the best least-squares plane is $0.204 \AA$ for the porphyrin containing atom $\mathrm{Cu}(1)$ while it is $0.286 \AA$ for the porphyrin containing atom $\mathrm{Cu}(2)$; the maximum displacements are 0.523 (8) \AA for atom $\mathrm{C}(3)$ and 0.75 (1) \AA for atom $\mathrm{C}\left(2^{\prime \prime}\right)$ in the two separate porphyrin rings. Distances of interest in relation to biological reaction centers include Cu (1) $-\mathrm{Cu}(2), 10.49 \AA ; \mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right), 5.01 \AA$; $\mathrm{C}(5)-\mathrm{C}\left(41^{\prime}\right), 12.38 \AA$; $\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(41), 12.91 \AA ; \mathrm{Cu}(1)-\mathrm{CT}(1), 6.36 \AA ; \mathrm{Cu}(1)-\mathrm{CT}(2), 15.48$ \AA; $\mathrm{Cu}(2)-\mathrm{CT}(2), 6.33 \AA$; and $\mathrm{Cu}(2)-\mathrm{CT}(1), 16.01 \AA$, where $\mathrm{CT}(1)$ is the center of the $\mathrm{C}(41)-\mathrm{C}(46)$ ring and $\mathrm{CT}(2)$ is the center of the $\mathrm{C}\left(41^{\prime}\right)-\mathrm{C}\left(46^{\prime}\right)$ ring. Relevant dihedral angles are given in Table III. Where steric constraints are minimal, e.g. at atoms $C(41)$ and $C\left(41^{\prime}\right)$, the dihedral angles are near the expected 90° (96.3 and 77.8°); at the constrained phenyl bridge these angles are considerably smaller (55.4° and $180-125.0=$ 55.0°).

Figure 3 also shows that both dimethoxy linkages have their oricntations such that the methoxy linkage on the interior of each porphyrin unit adopts the sterically least encumbered position. Thus, the two porphyrin subunits and their substituents help define what can be considered an overall "skewed" arrangement contained within the context of a general gable-type configuration. The obvious structural similarity between this completely synthetic system and parts of the reaction center (notably the Behl and Bph pair) is a feature we consider to be of particular interest.

Description of the Structure of $\mathrm{Cu}_{2} \cdot \mathbf{9} \cdot\left(\mathbf{2} \mathrm{CHCl}_{3}\right)$. The crystal structure of $\mathrm{Cu}_{2} \cdot 9 \cdot\left(2 \mathrm{CHCl}_{3}\right)$ consists of the packing of one centrosymmetric $\mathrm{Cu}_{2} \cdot 9$ molecule and two chloroform molecules in

Scheme 111. Synthesis of Monometalated Gable and Flat Monoquinones, $\mathrm{H}_{2} \mathrm{Zn} \cdot 1 \mathbf{0}, \mathrm{ZnH}_{2} \cdot 10, \mathrm{H}_{2} \mathrm{Zn} \cdot 11$, and $\mathrm{ZnH}_{2} \cdot 11$

the unit cell. There are no unusual intermolecular contacts. A drawing of the molecule is given in Figure 4. Selected bond distances and angles for the $\mathrm{Cu}_{2} \cdot 9$ molecule are given in Table IV. Additional data are given in Table SIII. ${ }^{48}$ Bond distances and angles are normal. As in the other structures reported here the porphyrin core in $\mathrm{Cu}_{2} \cdot 9$ is S_{4}-ruffled; the mean deviation from the best least-squares plane is $0.129 \AA$ and the maximum deviations from this plane are 0.372 (5) \AA for atom $C(5)$ and -0.273 (5) \AA for atom C(10). Two of the ethyl linkages on the porphyrin ring are "up" while the other two are "down". All appendages (both ethyl and methoxy) are ordered in this structure, as is the chloroform of solvation.

Distances of interest in relation to biological reaction centers include $\mathrm{Cu}(1)-\mathrm{Cu}(2), 12.77 \AA ; \mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right), 5.86 \AA ; \mathrm{C}(5)-\mathrm{C}\left(24^{\prime}\right)$,
 from a comparison of Figures 3 and 4 , the $\mathrm{Cu}_{2} \cdot 9$ molecule, with its 1,4 -attachment of porphyrin groups to the bridging phenyl ring, is considerably more extended than is the $\mathrm{Cu}_{2} \cdot 5$ molecule, with its 1,3 -attachment of porphyrin groups. The $\mathrm{Cu}_{2} \cdot 9$ molecule is also less sterically constrained, as the dihedral angles of Table 111 indicate. Note that these dihedral angles are near to $0^{\circ}, 90^{\circ}$, or 180° so that successive rings are nearly perpendicular to each other.

Proton NMR Spectra. All pyrrolic precursors gave satisfactory ${ }^{1}$ H NMR spectra, except for the butyl dipyrromethanes 31-33, for which a poorly resolved butyl substituent fine structure was observed. The reason for this lack of resolution is unknown;

Figure 4. The structure of the $\mathrm{Cu}_{2}, 9$ molecule. The non-hydrogen atoms are labeled. For the non-hydrogen atoms the 50% probability ellipsoids are shown. The hydrogen atoms are drawn artificially small for the sake of clarity.
however compounds 31-33 had sharp melting points and appropriate mass spectra and are considered to be pure. As noted earlier, all the porphyrins except the hydroquinones gave satisfactory proton NMR spectra in CDCl_{3} at 300 or 360 MHz . For the hydroquinones, low solubility hampered accurate analyses. For the important specific cases of $\mathrm{H}_{4} \cdot 14$ and $\mathrm{H}_{4} \cdot 15$ (the precursors to $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$), where ${ }^{4} \mathrm{H}$ NMR spectral characterizations were deemed essential, methanol- d_{4} was added to the NMR tubes to increase solubility. As a result, the internal pyrrole regions of these porphyrins were not observed, owing to rapid tautomeric exchange.
The proton NMR spectrum of the monoquinone gable porphyrin $\mathrm{H}_{4} \cdot 10$ (Figure 5) is illustrative of those obtained for the 1,3 -phenyl-linked systems. It, and the spectra of other compounds in the gable series, is characterized by two sets of phenyl-type ring absorbances corresponding to the bridging phenyl ring protons, appearing as a set of resonances from 7.95 to 8.95 ppm , and the quinone ring protons, which are observed as a tightly clustered series of peaks centered at roughly 7.3 ppm . Importantly, the first of these appears as a progression of singlet-, triplet-, and doub-let-type signals, as would be expected for the proposed 1,3-phenyl-linked structure. Also consistent with the proposed structure is the observation of three different types of meso- H signals in the general range of 9.8 to 10.15 ppm . These signals, which integrate in the ratio 2:2:1, appear to be diagnostic of transannular monosubstituted meso-linked porphyrin dimers and

Table IV. Summary of Bond Distances (\AA) and Angles (deg) for $\mathrm{Cu}_{2} \cdot 9$

$\mathrm{Cu}-\mathrm{N}$ (avg)	2.003 (6)	$\mathrm{C}_{2}-\mathrm{C}_{\mathrm{m}}$	1.389 (9)
$\mathrm{N}-\mathrm{C}_{2}$	1.378 (16)	$\mathrm{C}_{6}-\mathrm{C}_{a}$	1.496 (13)
$\mathrm{C}_{4}-\mathrm{C}_{6}$	1.446 (16)	$\mathrm{Ca}_{a}-\mathrm{C}_{\beta}$	1.507 (15)
$\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{b}}$	1.356 (8)		
$\underset{\text { (cis) }}{\mathrm{N}-\mathrm{Cu}-\mathrm{N}}$	86.6 (1)-93.1 (2)	$\mathrm{C}_{\mathrm{a}}-\mathrm{N}-\mathrm{C}_{\mathrm{a}}$	105.0 (3)-106.0 (4)
$\begin{array}{r} \mathrm{N}-\mathrm{Cu}-\mathrm{N} \\ \text { (trans) } \end{array}$	178.2 (2)-179.1 (2)	$C_{i d}-C_{b}-C_{b}$	105.4 (4)-107.8 (4)
$\mathrm{Cu}-\mathrm{N}-\mathrm{C}_{4}$	123.8 (3)-130.9 (3)	$\mathrm{C}_{6}-\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{m}}$	122.6 (4)-128.3 (4)
$\mathrm{N}-\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{b}}$	108.0 (4)-112.6 (4)	$\mathrm{Ca}_{3}-\mathrm{C}_{6}-\mathrm{C}_{12}$	124.5 (4)-129.9 (4)
$\underline{\mathrm{N}-\mathrm{C}_{4}-\mathrm{C}_{\mathrm{m}}}$	122.8(4)-125.6 (4)		

Table V. Crystal Data and Data Collection

compound	$\mathrm{H}_{2} \cdot 20$	$\mathrm{Cu}_{2} \cdot 5 \cdot 1.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{MeOH}$	$\mathrm{Cu}_{2} \cdot \mathbf{9 . 2} \mathrm{CHCl}_{3}$
formula	$\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{88} \mathrm{H}_{93.5} \mathrm{Cl}_{4.5} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{4.5}$	$\mathrm{C}_{90} \mathrm{H}_{96} \mathrm{Cl}_{6} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{6}$
formula weight	612.82	1621.91	1725.63
space group	$C_{2 h}-P 2_{1} / \mathrm{c}$	$C_{1}^{1}-P \overline{1}$	$C_{1}^{1}-P \overline{1}$
a, \AA	8.241 (6)	19.015 (4)	12.036 (3)
b, \AA	30.34 (3)	19.043 (6)	12.762 (3)
c, \AA	13.502 (12)	12.957 (5)	14.353 (3)
α, deg	90	109.90 (2)	94.64 (1)
β, deg	92.86 (1)	108.84 (2)	103.54 (1)
γ, deg	90	101.86 (2)	104.68 (1)
V, \AA^{3}	3375	3904	2050
$t,{ }^{\circ} \mathrm{C}$	-162	-162	-115
Z	4	2	1
$\rho_{\text {cale }}, \mathrm{g} / \mathrm{cm}^{3}$	1.207	1.379	1.397
crysial vol, mm^{3}	0.0068	0.0149	0.0041
radiation, \AA	Mo $\mathrm{K} \alpha\left(\lambda\left(\alpha_{1}\right)=0.7093\right)$ graphite monochromator)	$\mathrm{CuK} \alpha\left(\lambda\left(\alpha_{1}\right)=1.54056\right)$ (β filter)	$\mathrm{CuK} \alpha\left(\lambda\left(\alpha_{1}\right)=1.54056\right)$ (β filter)
μ, cm^{-1}	5.51	25.56	29.34
transmission factors	-	0.510-0.661	0.614-0.878
scan type	$\boldsymbol{\omega}$	$\omega-2 \theta$	$\omega-2 \theta$
scan range, deg	$\pm 0.7(\omega)$	$\pm 0.8(\omega)$	± 0.85 (ω)
scan speed, deg/min	$2.0(\omega)$; rescan $\leq 100 \mathrm{~s}$	$4.0(\omega)$; rescan $\leq 40 \mathrm{~s}$	$3.2(\omega)$; rescan $\leq 50 \mathrm{~s}$
$\lambda^{-1} \sin \theta$ range, \AA^{-}	$0.0615-0.5958$	0.023-0.562	0.023-0.627
data collected	$h, k, \pm l$	$\pm h, \pm k, l$	$\pm h, \pm k, l$
unique data	5894	11574	8318
unique dara $\left(F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)\right)$	3307	6909	4534
no. of variables	434	1015	505
$R\left(F_{0}{ }^{2}\right)$	0.101	0.130	0.105
$R_{\psi}\left(F_{0}{ }^{2}\right)$	0.161	0.194	0.152
$R\left(F_{0}\right)\left(F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)\right)$	0.069	0.085	0.067
crror observation of unit weight	1.44	1.84	1.44

Figure 5. Proton NMR spectrum of $\mathrm{H}_{4} \cdot 10$ in CDCl_{3} at 300 MHz . The designations s and x denote solvent and impurity peaks, respectively.
were also observed for compounds $\mathrm{H}_{4} \cdot \mathbf{1 1}-\mathrm{H}_{4} \cdot 15$. As expected, however, they were not observed in the symmetrical systems $\mathrm{H}_{4} \cdot 1$ and $\mathrm{H}_{4} \cdot 2$ (which showed a $2: 1$ ratio of singlets in the meso region), or in $\mathrm{H}_{4} \cdot 3-\mathrm{H}_{4} \cdot 8$ (which displayed simple singlets). A further diagnostic feature of $\mathrm{H}_{4} \mathbf{1 0}$, and the other unsymmetrical systems reported here (i.c. $\mathrm{H}_{4} \cdot 11-\mathrm{H}_{4} \cdot 15$), is the well-separated set of two distinct $\mathrm{N}-\mathrm{H}$ signals observed in the internal pyrrole portion of the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 5). These two sets of peaks, which in the specific case of $\mathrm{H}_{4} \cdot 10$ resonate at $\delta=-2.1$ and -3.0 ppm , are indicative of the different electronic environments extant for the two different porphyrin subunits. Such distinct pairs of signals are observed neither in the unsubstituted dimers $\mathrm{H}_{4} \cdot 1$ and $\mathrm{H}_{4} \cdot 2$ nor in the symmetrically substituted systems $\mathrm{H}_{4} \cdot \mathbf{3}-\mathrm{H}_{4} \cdot \mathbf{8}$. These
two classes of compounds each display only a single set of pyrrolic $\mathrm{N}-\mathrm{H}$ resonances, at roughly -3.0 and -2.1 ppm , respectively. Thus, the higher field pyrrole $\mathrm{N}-\mathrm{H}$ signals observed in $\mathrm{H}_{4} \cdot 10-$ $\mathrm{H}_{4} \cdot 15$ may readily be assigned to the unsubstituted porphyrin, and those at lower field to the substituted subunit. Interestingly, in all cases studied, the signal at higher field was always found to be split into a fairly well-resolved pair at room temperature, suggesting that complete $\mathrm{N}-\mathrm{H}$ tautomerization is slow on the NMR time scale. This phenomenon is apparently a general feature of the substitution pattern and does not derive from some special effect associated with the monosubstituted I,3-phenyl- or 1,4-phenyl-linked dimeric configurations: Almost identical chemical shifts and splitting patterns were observed for the pyrrole

Figure 6. Proton NMR spectrum of $\mathrm{H}_{4} \cdot 11$ in CDCl_{3} at 300 MHz . The designations s and x denote solvent and impurity peaks, respectively.
$\mathrm{N}-\mathrm{H}$ protons of monomers $\mathrm{H}_{2} \cdot 16, \mathrm{H}_{2} \cdot \mathbf{2 0}, \mathrm{H}_{2} \cdot 21$, and $\mathrm{H}_{2} \cdot 22$. By contrast, the pyrrole $\mathrm{N}-\mathrm{H}$ signals observed for the disubstituted subunits of dimers $\mathrm{H}_{4} \cdot 10-\mathrm{H}_{4} \cdot 15$ always appeared as broad singlets, as did those for the reference dimers $\mathrm{H}_{4} \cdot 3-\mathrm{H}_{4} \cdot 8$ and control monomers $\mathrm{H}_{2} \cdot 17-\mathrm{H}_{2} \cdot 19$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the monoquinone porphyrin dimer $\mathrm{H}_{4} \cdot 11$ (Figure 6) is typical of those observed for the flat series of 1,4 -phenyl-linked dimers. As expected, the spectra of these two species are similar in the aliphatic ($1.0-4.0 \mathrm{ppm}$), meso ($9.8-11 \mathrm{ppm}$), and internal $\mathrm{N}-\mathrm{H}(-2$ to $-3 \mathrm{ppm})$ regions because of the similarity of their overall substitution patterns. The resonances of the bridging phenyl protons in the 8-9 ppm region are different for the flat and gable dimers, as expected from their different (1,3 vs 1,4) ring placement. Unexpectedly, however, the flat dimers $\mathrm{H}_{4} \cdot \mathbf{2}, \mathrm{H}_{4} \cdot \mathbf{4}, \mathrm{H}_{4} \cdot \mathbf{6}, \mathrm{H}_{4} \cdot \mathbf{9}, \mathrm{H}_{4} \cdot 11, \mathrm{H}_{4} \cdot \mathbf{1 3}$, and $\mathrm{H}_{4} \cdot 15$ show marked differences between each other in the bridging phenyl region: Compounds $\mathrm{H}_{4} \cdot 2$ and $\mathrm{H}_{4} \cdot 9$ display sharp singlets (no splitting) in this region, $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ show symmetric splitting patterns, and $\mathrm{H}_{4} \cdot 11, \mathrm{H}_{4} \cdot 13$, and $\mathrm{H}_{4} \cdot 15$ show asymmetric splittings. Since the main differences between all these compounds are in the transverse meso substituents, this complexity implies that differences in the transverse meso substituents can and do affect the magnetic environment of the central phenyl protons even though they are some $10 \AA$ away. The bridging phenyl resonances of $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ are most useful for discussion (Figures 7 and 8). At $23^{\circ} \mathrm{C}$, the bridging phenyl resonance of the flat bisquinone $\mathrm{H}_{4} \cdot 4\left(\mathrm{CDCl}_{3}\right)$ consists of two singlets around a doubled doublet, centered at 8.57 ppm (total width $=75 \mathrm{~Hz}$). The coupling constant for the doubled doublet in $\mathrm{H}_{4} \cdot \mathbf{4}$ is 8 Hz , and tertiary splitting ($<1 \mathrm{~Hz}$) is clearly visible at temperatures below $20^{\circ} \mathrm{C}$. The bridging phenyl region of $\mathrm{H}_{4} \cdot 6$ (toluene- d_{8} or CDCl_{3}), whose features are similar to but less sharp than that of $\mathrm{H}_{4} \cdot 4$, is centered at 8.19 ppm (total width $=35 \mathrm{~Hz}$). The coupling constant for the doubled doublet of $\mathrm{H}_{4} \cdot 6$ is $7-8 \mathrm{~Hz}^{49}$ We believe the origins of these splitting effects arise from the differing placement of the ortho substituents on the transverse meso groups, as shown for $\mathrm{H}_{4} \cdot 4$ in Figure 9. The ortho atoms on the meso-phenyl groups of the porphyrin rings could cause the electron distribution on opposite faces of the porphyrin ring to be disymmetric with respect

[^5]

Figure 7. Proton NMR (CDCl_{3}) of the bridging phenyl resonances of $\mathrm{H}_{4} 4$ recorded at 500 MHz .
to the plane of the ring, thus creating different magnetic environments for the adjacent phenyl protons on opposite faces of the porphyrin ring. We believe this occurs for the bridging phenyl protons of compounds $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$. To our knowledge, splitting effects from conformational differences between such well-sepa-

Figure 8. Proton NMR (toluene- d_{8}) of the bridging phenyl resonances of $\mathrm{H}_{4} \cdot 6$ recorded at 500 MHz .

Figure 9. Rotational isomerism of pendant quinones in $\mathrm{H}_{4} \cdot 4$ and suggested origin for the observed NMR splitting of the bridging phenyl region of compounds $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$.
rated atoms in a molecule are unprecedented. Porphyrin rings, however, are well known for having strong ring currents, and it is conceivable that a steric perturbation on one face of a porphyrin ring can affect the electronic distribution around both faces of that ring. As shown in Figure 9, compound $\mathrm{H}_{4} \cdot 4$ may consist of syn- ($C_{2 h}$ symmetry) and anti- ($C_{2 t}$ symmetry) rotational atropisomers ("rotamers"). In the anti rotamer, the bridging phenyl
protons ortho to each other are magnetically identical and hence do not split each other; a pair of singlets results. By contrast, in the syn rotamer, the ortho protons are in different magnetic environments, so they split each other, and a doubled doublet results. This pattern, modeled at the bottom of Figure 9, accounts well for the observed splitting in Figures 7 and 8. Here, however, it is important to note that the particular proton assignments are arbitrary: We are currently unsure as to whether, in fact, it is the "A" protons which lie upfield as illustrated or whether it is the " B " protons; experiments are in progress to resolve this and other issues associated with these unusual splitting effects.

Variable-temperature studies of the bridging phenyl resonances of $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ are noteworthy (Figures 7 and 8). When the samples are warmed, both $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ show bridging phenyl fine structure coalescence in the range of 40 to $50^{\circ} \mathrm{C}$. This indicates that the A and B protons in Figure 9 are undergoing exchange. This coalescence process may involve thermally activated rotation of one or more of the three bridging phenyl or pendant phenyl/quinone groups on or between the porphyrin rings of $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$. Rotation of the outermost, or pendant, substituents would serve to equilibrate the $C_{2 v}$ and $C_{2 h}$ rotamers and hence to scramble completely the A and B bridging phenyl protons. By contrast, rotation of only the bridging phenyl subunit would serve to scramble only the A and B phenyl protons within each still chemically distinct $C_{2 v}$ and $C_{2 h}$ diasteriomeric set. Here, however, even in the absence of further pendant phenyl or quinone rotations, complete apparent coalescence would still be observed if the chemical shifts of the now-unsplit central phenyl protons happen to be identical for each ($C_{2 v}$ and $C_{2 h}$) rotameric system.

Quantitative studies, carried out with use of the GENXCH program (cf. Experimental Section), indicate that the barriers for the exchange in $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ are about 18 and $15 \mathrm{kcal} / \mathrm{mol}$, respectively. These values are somewhat smaller than those for rotational isomerizations involving ortho-substituted phenylporphyrins, ${ }^{50-52}$ for which barriers as high as $26 \mathrm{kcal} / \mathrm{mol}$ have been found (in, for instance, 5,15 -bis (0 -aminophenyl)-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphine ${ }^{50}$), and are much more in line with those expected for simple unsubstituted or parasubstituted tetraphenylporphyrin atropisomerization processes. ${ }^{53}$ The observed coalescence thus probably involves rotations of the internal, unsubstituted phenyl subunit (only) and not the outer ortho-substituted appendages. Over the temperature range studied we would not expect to see manifestations of rotations of these outer appendages because the barriers should be on the order of $25 \mathrm{kcal} / \mathrm{mol} .{ }^{50}$

Selective Monometalation. A second important use of 'H NMR spectroscopy was to determine the regiochemistry of the selective monometalations shown in Scheme III. Evidence for the regiochemical assignments in the gable series is given in Figure 10, which shows the internal pyrrole region of several different monometalated porphyrins: $\mathrm{H}_{4} \cdot \mathbf{1 0}, \mathrm{ZnH}_{2} \cdot \mathbf{1 0}, \mathrm{H}_{2} \mathrm{Zn} \cdot \mathbf{1 0}, \mathrm{ZnH}_{2} \cdot \mathbf{1}$, and $\mathrm{ZnH}_{2} \cdot 3$. Compound $\mathrm{H}_{4} \cdot 10$ shows two internal pyrrole resonances, at ca. -2 and -3 ppm . By contrast, $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}$ shows only a resonance at -2 ppm , and $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ shows only a resonance at -3 ppm (plus a trace of the nonmetalated $\mathrm{H}_{4} \cdot \mathbf{1 0}$). Compound $\mathrm{ZnH}_{2} \cdot \mathbf{1}$ has a resonance only at -3 ppm and $\mathrm{ZnH}_{2} \cdot 3$ has a resonance only at $\mathbf{- 2} \mathrm{ppm}$. This implies that $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}$ has internal pyrrole protons only in the proximal, quinone-substituted ring and $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ has internal pyrrole protons only in the distal, unsubstituted ring. A similar result was obtained for the flat monoquinone porphyrins $\mathrm{ZnH}_{2} \cdot 11$ and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$, which were prepared in an analogous fashion as described above.

Carbon NMR Spectra. Satisfactory ${ }^{13} \mathrm{C}$ NMR spectra were obtained for all the porphyrins reported here, with the exception of the hydroquinones $\mathrm{H}_{4} \cdot \mathbf{7}, \mathrm{H}_{4} \cdot \mathbf{8}, \mathrm{H}_{4} \cdot 14, \mathrm{H}_{4} \cdot 15, \mathrm{H}_{2} \cdot 19$, and $\mathrm{H}_{2} \cdot 22$, and the flat dimer $\mathrm{H}_{4} \cdot 9$, all of which proved too insoluble for such

[^6]

Figure 10. Proton NMR $\left(\mathrm{CDCl}_{3}\right)$ of internal parole region at 300 MHz for (top to bottom) $\mathrm{H}_{4} \cdot \mathbf{1 0}, \mathrm{ZnH}_{2} \cdot \mathbf{3}, \mathrm{ZnH} \cdot \mathbf{1}, \mathrm{H}_{2} \mathrm{Zn} \cdot \mathbf{1 0}$, and $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}$.

Figure 11. Carbon-13 NMR of $\mathrm{H}_{4} \cdot 4$ in CDCl_{3}.
analyses. A sample spectrum, that of the flat bisquinone dimer $\mathrm{H}_{4} \cdot \mathbf{4}$, is shown in Figure 11. Peak assignments were not made for the aromatic region, because of the complexity of the spectra (owing presumably to the asymmetric nature of the porphyrin dimers), but were found to correlate well with the expected structures in the aliphatic ($0-50 \mathrm{ppm}$) region. Carbon NMR studies were primarily used to establish the presence of the quinone moiety in the molecule. The carbon atoms of the carbonyl group associated with this subunit were found to resonate at 187-189 ppm . Since these quinone NMR resonances appear far downfield from those of any other carbon nuclei present in the molecules and are not found in the quinone-free precursors, this ${ }^{13} \mathrm{C}$ NMR

Figure 12. UV-visible spectra of $\mathrm{H}_{4} \cdot \mathbf{1 0}, \mathrm{H}_{4} \cdot \mathbf{1 1}$, and $\mathrm{H}_{2} \cdot \mathbf{1 7}$ in CDCl_{3}. test provided an unambiguous indication of the presence of a quinone group in the sample.
UV-Visible Spectra. UV-visible spectra of some of the compounds synthesized are shown in Figures 12-14.54 Complete

Figure 14. UV-visible spectra of $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{ZnH}_{2} \cdot 11$ in CDCl_{3}.
UV-visible data for the other porphyrins are given in the Experimental Section. Repeated measurements gave $5-10 \%$ variance

Figure 15. Cyclovoltammograms $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$. $\mathrm{Fc} / \mathrm{Fc}^{+}$denotes ferrocene/ferrocinium reference.
in the extinction coefficients; the wavelength values ($\lambda_{\text {max }}$) are considered to be accurate to within Inm.

Figure 12 shows the absorbances of the free base dimers $\mathrm{H}_{4} \cdot \mathbf{1 0}$ and $\mathrm{H}_{4} \cdot 11$ as well as the monomer $\mathrm{H}_{2} \cdot 17$. Compounds $\mathrm{H}_{4} \cdot 10$ and $\mathrm{H}_{4} \cdot 11$ show approximately the same extinction coefficient in the Soret region, as well as in the visible or "Q" band region. The differences between the UV-visible absorbances of compounds $\mathrm{H}_{4} \cdot 10, \mathrm{H}_{4} \cdot 11$, and $\mathrm{H}_{2} \cdot 17$ become more pronounced upon complexation of these compounds with zinc (Figure 13). The order of molar absorptivity again is $\mathrm{Zn}_{2} \cdot 11>\mathrm{Zn}_{2} \cdot 10>\mathrm{Zn} \cdot 17$. Excitonic interactions between the porphyrin rings in $\mathrm{Zn}_{2} \cdot \mathbf{1 0}$ result in the "split Soret" band typical of 1,3-phenyl-linked, bis-porphyrinylbenzenes, ${ }^{372-c, 9,44}$ with two peaks at 407 and 424 nm . The flat dimer $\mathrm{Zn}_{2} \cdot 11$ also shows some excitonic interaction: Only a slight shoulder at 412 nm is seen, with the major peak appearing at 424 nm . Figure 14 shows the UV-visible spectra of the monometalated gable and flat monoquinones $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}$ and $\mathrm{ZnH}_{2} \cdot 11$. Again, evidence for excitonic interactions is observed in the Soret region (as manifest by spectral shifts and/or splittings) but to a much lesser extent than in the corresponding bis-zinc derivatives, $\mathrm{Zn}_{2} \cdot 10$ and $\mathrm{Zn}_{2} \cdot 11$. A more detailed analysis of the dipole coupling parameters for various gable and flat dimers has been performed and is reported elsewhere. ${ }^{55}$

Electrochemistry. The results of a systematic survey of model compounds $\mathrm{H}_{4} \cdot 1, \mathrm{H}_{4} \cdot 2, \mathrm{H}_{4} \cdot 10, \mathrm{H}_{4} \cdot 11, \mathrm{H}_{2} \cdot 16, \mathrm{H}_{2} \cdot 17$, and their zinc chelates is presented in Table Vl , and two sample voltammograms are shown in Figure 15.
a. Monomers. In the quinone-free systems, the redox potentials for both oxidation and reduction (in dichloromethane) of the

[^7]Table VI. Electrochemical Data (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for Selected Porphyrins Prepared in this Study ${ }^{a}$

${ }^{a}$ Redox potentials taken as average of anodic and cathodic peak potentials in cyclic voltammetry and are reported vs $\mathrm{Fe} / \mathrm{Fe}^{+}$. See text for details.
 Pt electrode). ${ }^{\text {f }}$ Shows two waves.
free-base porphyrins (including the monomer $\mathrm{H}_{2} \cdot 16$ and dimers $\mathrm{H}_{4} \cdot \mathbf{1}, \mathrm{H}_{4} \cdot \mathbf{2}$ discussed below) are typically $180-230 \mathrm{mV}$ more positive than those for the corresponding zinc complex. For instance, the potential separation between the first oxidation and first reduction in monomers $\mathrm{H}_{2} \cdot 16$ and $\mathrm{Zn} \cdot 16$ (2.21 and 2.26 V , respectively) matches the empirically derived value of 2.25 ± 0.15 V for a serics of octaethylporphyrin complexes undergoing ringlocalized redox processes. ${ }^{56}$ Indeed, on the whole, the potentials we observe are completely consistent with those reported by Furhop et al. for free base and zinc-complexed octaethylporphyrin in butyronitrile and in DMSO. ${ }^{56}$

The results obtained for monomers $\mathrm{H}_{2} \cdot \mathbf{1 6}$ and $\mathrm{H}_{2} \cdot \mathbf{1 7}$ in THF are qualitatively similar to those in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ except that the potential separation between porphyrin oxidation and reduction is greater (e.g. for compound $\mathrm{Zn} \cdot \mathbf{1 6}, 2.42$ in THF vs 2.26 V in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). This undoubtedly reflects differences in solvation of the reduced and oxidized porphyrins in the two solvents. Kadish et al. have in fact reported a general correlation between metalloporphyrin reduction potentials and solvent properties; reduction of tetraphenylporphyrinatozinc(II) in THF occurs at the most negative potential of any solvent tested. ${ }^{57}$ We are interested primarily in the relative redox potentials for the series 1-15, and so the remaining discussion will focus on data taken in a single solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

In the monomeric systems, synthetic introduction of a quinone substituent (to give, e.g., 17) has two primary effects: (1) The potential for porphyrin oxidation is shifted positive by $80-90 \mathrm{mV}$ for both the frec-base and zinc complexes; and (2) the potential separation between the first porphyrin-based oxidation and reduction increases substantially (for example to 2.39 V in compound $\mathrm{H}_{2} \cdot 17$ compared to 2.21 V in $\mathrm{H}_{2} \cdot 16$). The electrochemical signature of the quinone group is also clearly seen in the two voltammetric waves around -0.80 V (reversible) and -1.50 (quasireversible) arising from reduction to the semiquinone and quinone dianion, respectively. It seems likely that the coulombic effect of the quinone dianion that would be produced upon reduction renders the corresponding porphyrin reduction more difficult (i.e.,

[^8]shifting the wave to a more negative redox potential). In general, these data agree with previous work ${ }^{58}$ in supporting a model in which porphyrin and quinone redox processes occur independently, with relatively little interaction other than inductive or coulombic effects.
b. Dimers. Extension of the above results to the dimers $\mathrm{H}_{4} \cdot 1$, $\mathrm{H}_{4} \cdot 2 \cdot \mathrm{H}_{4} \cdot 10$, and $\mathrm{H}_{4} \cdot 11$ and their mono- and bis-zinc chelates was complicated to a certain extent by the low solubility and adsorptive properties of some of these compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In addition, we also experienced some occasional difficulties in obtaining reversible voltammograms, especially for oxidation of free-base dimers and reduction of quinone-substituted zinc complexes. By and large, however, the voltammetry for many of these dimers was well behaved (as illustrated in Figure 15 for compounds $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ and $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$), allowing for the compilation of the data listed in Table VI. These data provide a reasonable framework with which to discuss the redox properties of the gable and flat dimers.

The gable series of 1,3 -disubstituted dimers (i.e., $\mathrm{H}_{4} \cdot \mathbf{1}$ and $\mathrm{H}_{4} \cdot 10$) is best described as consisting of non-interacting redox centers under the conditions of the experiment. In fact, inspection of Table VI shows that for each compound in the series, the potentials for the first porphyrin-based oxidation and reduction are within 30 mV of the values predicted from the corresponding monomers. This is not unexpected: There is minimal coupling between the 1,3 -positions on the common phenyl ring, and the porphyrin subunits are sterically constrained to be noncoplanar with the phenyl bridge, as confirmed by X-ray crystallography (Figure 3). We are unable as yet to assign an electron stoichiometry to any of these waves; however, it seems likely that at least for the zinc/free base heterodimers (compounds $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}$, $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$, and $\mathrm{ZnH}_{2} \cdot \mathbf{1}$), each of the observed redox processes is probably a single-electron localized event.

The results for the flat series of dimers (i.e. $\mathrm{H}_{4} \cdot 2$ and $\mathrm{H}_{4} \cdot 11$) have been somewhat more difficult to interpret. Dimer $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$
(58) (a) Wilford, J. H.; Archer, M. D.; Bolton, J. R.; Ho, T. F.; Schmidt. J. A.; Weedon, A. C. J. Phys. Chem, 1985, 89, 5395-5398. (b) Archer, M. D.; Gadzekpo, V. P. Y.; Bolton, J. R.; Schmidt, J. A.; Weedon, A. C. J. Chem. Soc., Faraday Trans. 2 1986, 82, 2305-2313. (c) Schmidt, J. A.; Liu, J.-Y.; Bolton, J. R.; Archer, M. D.; Gadzekpo, V. P. Y. J. Chem. Soc., Faraday Trans. 1 1989, 85, 1027-1041.
shows well-behaved cyclic voltammetry (Figure 15a), and is easily interpreted as resulting from noninteracting redox centers. The corresponding nonsubstituted heterodimer $\mathrm{ZnH}_{2} \cdot \mathbf{2}$, on the other hand, shows a redox potential for the first oxidation that is considerably more positive than that observed for any of the corresponding monomeric zinc complexes. This generalization was also found to hold for the corresponding zinc and free-base homodimers, $\mathrm{H}_{4} \cdot \mathbf{2}$ and $\mathrm{Zn}_{2} \cdot \mathbf{2}$, respectively; the first porphyrin reduction and oxidation waves for these compounds are both shifted positive by $70-100 \mathrm{mV}$ relative to the values predicted from the monomers. This presumably reflects some degree of coupling between the porphyrin subunits. However, more definitive conclusions must a wait the acquisition of more precise data from systems where adsorption and solubility difficulties are minimal.

Conclusion

A number of monomeric and dimeric (both gabled and flat) porphyrins, with and without appended quinone groups have been prepared and characterized. Those dimers bearing only a single quinone substituent were also prepared as their regioselectively monometalated monozinc adducts starting from either the quinone or hydroquinone precursors as appropriate.

Complete X-ray crystallographic structural analyses were performed on three of the porphyrins reported here. These structures reveal key features of the overall molecular geometries of both the monomers and the flat and gable series of dimers. In addition, these structures indicate that, in both the monomers and dimers, the porphyrin rings are nearly perpendicular to their meso substituents.

The complex splitting pattern observed for the bridging phenyl protons in the ${ }^{1} \mathrm{H}$ NMR spectra of the transversely substituted, nonmetalated flat dimers provides evidence for slow subunit rotations at room temperature. Proton NMR spectroscopy also shows evidence of two different sets of pyrrole $\mathrm{N}-\mathrm{H}$ signals in the monosubstituted gable and flat unmetalated dimers and was used to assign the regiochemistry of products $\mathrm{H}_{2} \mathrm{Zn} \cdot \mathbf{1 0}, \mathrm{ZnH}_{2} \cdot \mathbf{1 0}$, $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$, and $\mathrm{ZnH}_{2} \cdot 11$, obtained as the result of selective metal insertions. ${ }^{13} \mathrm{C}$ NMR spectroscopy was used to characterize many of these new porphyrins and to identify the presence of a quinone functionality after DDQ oxidation.

UV-visible spectra showed the presence of excitonic interaction between the porphyrin subunits in the gable-type dimers and, to a lesser extent, in the flat series.

From electrochemical analyses it was found that: (a) The radical cation of the zinc complex of a given porphyrin is more energetically accessible (less positive redox potential) than that of the corresponding free base; (b) substitution of a porphyrin macrocycle with quinone results in a positive shift of the potential for porphyrin oxidation, while the quinone dianion gives a negative shift in the potential for porphyrin reduction; (c) model compounds containing covalently linked porphyrins and quinones are well described as consisting of nearly noninteracting subunits under electrochemical conditions. This latter generalization was found to hold very well for the quinone-substituted monomers and gable series of dimers, and less well for the flat dimers.

In summary, we believe that the combination of multiple chromophoric units and detailed electronic and structural information makes several of the new compounds reported here suitable photosynthetic models for the study of energetic and orientation effects in multistep, long-range electron transfer processes. Indeed, these flat and gable dimers are the first structurally characterized synthetic systems that may be modified so as to define an energetic arrangement ([distal porphyrin]-[proximal porphyrin]-[quinone]) possibly analogous to the Sp -Bchl-Bph sequence observed in natural bacterial photosynthetic reaction centers.

Experimental Section

General Information. Meling points were measured on a Mel-temp apparatus and are uncorrected. Electronic spectra were recorded on a Beckman DU-7 spectrophotometer. Proton and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in CDCl_{3} with either $\mathrm{Me}_{4} \mathrm{Si}$ or CHCl_{3} ($\delta=7.24 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 77.0 ppm for ${ }^{13} \mathrm{C}$) as an internal standard. Proton spectra were recorded on eilher a Varian EM-390 (90 MHz), Nicolet NT-360 (360 MHz),

General Electric QE-300 (300 MHz), or Nicolet NT-500 (500 MHz) spectrometer. Unless otherwise noted, the peak assignments given were made on the basis of integrations and spectral intercomparisons with similar compounds. Carbon spectra were measured at 75,90 , or 125 MHz with use of, respectively, either a General Electric QE-300, Nicolet NT-360, or Nicolet NT-500 spectrometer. Routine low-resolution mass spectra (MS) were measured with either a Finnigan-MAT 4023 or Bell and Howell $21-491$ instrument. High-resolution mass spectra (HRMS) were obtained with a Bell and Howell 21-110B instrument. Fast atom bombardment mass spectra (FABMS) were determined with either a Kratos MS-50 instrument and a glycerol/oxalic acid matrix, or a Fin-nigan-MAT TSQ-70 instrument and 3 -nitrobenzyl alcohol matrix. In general, the glycerol/oxalic acid matrices tended to produce molecular ion peaks 3-6 amu higher than calculated. ${ }^{59}$ Elementary analyses were performed by Galbraith Laboratories, Knoxville, TN.

Cyclic voltammetry was performed in dichloromethane on a PAR 173/175 potentiostat with $0.2 \mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right] /\left[\mathrm{BF}_{4}\right]$ supporting electrolyte. All potentials were measured against an aqueous $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode but are reported vs ferrocene/ferricinium to eliminate junction potentials and to facilitate comparison with other solvent systems. Under the conditions above, $E^{\circ}\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)=0.58 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}$. A glassy carbon working electrode was used and was polished with either $1-\mu \mathrm{m}$ diamond paste or $0.3-\mu \mathrm{m}$ alumina, rinsed thoroughly, and subjected to a sequence of background scans (+1.1 to $-2.3 \mathrm{~V} \mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}$) in order to establish a stable baseline prior to each series of measurements. All solutions were purged and blanketed with dry argon to remove dissolved oxygen.

Materials. All solvents and chemicals were of reagent grade quality, purchased commercially and used without further purification except as noted below. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for use in the BBr_{3} demethylations was heated at reflux with and distilled from $\mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for use in electrochemical studies was heated at reflux with and distilled from CaH_{2}. Phosphorus oxychloride was heated at reflux with and distilled from PCl_{5} directly prior to use. Dimethylformamide (DMF) was distilled under reduced pressure and stored over $4-\AA$ molecular sieves. 1,8-Diazabicyclo[5.4.0] undec-7-ene (DBU) was distilled under reduced pressure prior to use, unless received from Aldrich Chemical C_{0}., in which case it was of sufficient purity to be used directly. Tetra-n-butylammonium fluoroborate was purified by recrystallization from ethyl acetate/pentane. Merck type 60 ($230-400$ mesh) silica gel was used for column chromatography. Thin-layer chromatography (TLC) was performed on commercially prepared silica gel plates purchased from Analtech, Inc.

Crystal Growth of $\mathrm{H}_{2} \cdot \mathbf{2 0}, \mathrm{Cu}_{2} \cdot \mathbf{5}$, and $\mathrm{Cu}_{2} \cdot 9$. Crystals of $\mathrm{H}_{2} \cdot \mathbf{2 0}$ were grown at $4^{\circ} \mathrm{C}$ by layering a concentrated solution of $\mathrm{H}_{2} \cdot 20$ in CHCl_{3} with hexane. Crystals of $\mathrm{Cu}_{2} \cdot 5$ and $\mathrm{Cu}_{2} \cdot 9$ were obtained at room temperature by vapor diffusion of methanol into the respective chloroform solutions. For the Cu dimers these crystallization procedures introduced solvent molecules into the crystal structures. The extent and nature of these solvent molecules werc deduced from the structural studies.

X-ray Structure of $\mathbf{H}_{2} \cdot \mathbf{2 0}$. A single crystal of $\mathrm{H}_{2} \cdot \mathbf{2 0}$ was mounted in the cold stream ($t \approx-150^{\circ} \mathrm{C}$ at the crystal) of a CAD4 diffractometer. Preliminary data showed symmetry and systematic absences consistent with the centrosymmetric monoclinic space group $C_{2 h}-P 2_{1} / c$. Details of data collection are given in Table V . The structure was solved by using the program SHELxS-86. ${ }^{60}$ All non-hydrogen atoms were located immediately and 2 -fold rotational disorder about the $\mathrm{C}(20)-\mathrm{C}(21)$ bond was apparen. Difference-electron density maps were used to locate the hydrogen atoms. These hydrogen atom positions were idealized (d(C-H) $\left.=0.95 \AA ; \mathbf{B}(\mathrm{H})=B_{\mathrm{eq}}(\mathrm{C})+1 \AA^{2}\right)$ and were fixed in subsequent calculations. In the final cycle of refinement on F_{0}^{2} all 5898 unique $F_{0}{ }^{2}$ values were used. This cycle involved 434 variables, including anisotropic thermal parameters for the non-hydrogen atoms and an occupancy factor to describe the rotational disorder of the quinone ring. This ring has two orientations in the ratio $0.66: 0.34$. Only the major orientation is shown in Figure 2. This cycle converged to $R\left(F_{0}{ }^{2}\right)=0.10$. Further details are in Table V . Table SIV ${ }^{48}$ presents the final positional parameters of the non-hydrogen atoms. Table SV^{48} gives the parameters for the hydrogen atoms. Table SV148 presents anisotropic thermal parameters. Table SV1148 presents $10\left|F_{\mathrm{o}}\right|$ vs $10\left|F_{\mathrm{c}}\right|$.

X-ray Structure of $\mathrm{Cu}_{2} \cdot 5$. A crystal of $\mathrm{Cu}_{2} \cdot 5 \cdot\left(1.5 \mathrm{CHCl}_{3}\right) \cdot\left(0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$ was mounted in the cold stream ($t=-150^{\circ} \mathrm{C}$) of a CAD4 diffractometer. Preliminary data showed no symmetry or systematic absences consistent with the triclinic space groups $P 1$ and $P \overline{1}$. Details of data
(59) Musselman, B. D. Proceedings of ASMS 34th Annual Conference on Mass Spectrometry and Allied Topics, Cincinnati, OH, June 8-13, 1986; pp 659-660.
(60) Sheldrick, G. M. In Crystallographic Computing 3 (Sheldrick, G. M.: Kruger, C.; Goddard, R., Eds.), pp 175-189. Oxford University Press, Lon-don-New York, 1985.
collection are given in Table V. The structure in space group $P \overline{1}$ was solved with use of the program shelxs-86. A difference electron density map revealed the expected atoms in the molecule along with several chlorine atoms ascribed to chloroform molecules of solvation. Several difference electron density maps and cycles of refinement yielded a fairly well ordered, completely anisotropic porphyrin molecule along with one CHCl_{3} molecule suffering from 5 -fold disorder, a half-occupancy CHCl_{3} molecule suffering from 2 -fold disorder, and a half-occupancy MeOH moleculc. In the final cycle of refinement on F^{2} all $11574 F_{0}^{2}$ values were used. This cycle involved 1015 variables and converged to values of $R\left(F^{2}\right)=0.130$ and $R(F)\left(F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)\right)=0.085$. The following material is tabulated: ${ }^{48}$ Table SVIII, final positional parameters for the non-hydrogen atoms, Table SIX, parameters for the hydrogen atoms; Table SX, anisotropic thermal parameters, and Table $S X 1,10\left|F_{\mathrm{o}}\right|$ vs $10 \mid F_{\mathrm{d}}$.

X-ray Structure of $\mathrm{Cu}_{2} \cdot 9$. A crystal of $\mathrm{Cu}_{2} \cdot 9 \cdot\left(2 \mathrm{CHCl}_{3}\right)$ was mounted in the cold stream of a CAD4 diffractometer. Preliminary data showed no symmetry or systematic absences, consistent with the triclinic space groups $P 1$ and $P \overline{1}$. Details of data collection are given in Table V .

The structure was solved in space group $P \overline{1}$ with the use of the program shelxs-86. The solution revealed the $\mathrm{Cu}_{2} \cdot 9$ molecule (with an imposed center of symmetry) and two CHCl_{3} molecules in the unit cell. Refinement of the structure was straightforward. In the final model the 56 non-hydrogen atoms were allowed to vibrate anisotropically while the 48 hydrogen atoms were fixed in positions idealized from their locations on difference electron density maps and were assigned fixed isotropic thermal parameters $1 \AA^{2}$ greater than the corresponding $B_{\text {eq }}$ values of the C atoms to which they are attached. This refinement on F^{2} of 505 variables and 8318 unique data converged to the agreement indices given in Table V. In the supplementary material the following are given: Table SXII, final parameters for the non-hydrogen atoms; Table SXIIl, hydrogen atom parameters; Table SXIV, anisotropic thermal parameters; and Table SXV, $10\left|F_{\mathrm{o}}\right|$ vs $10 \mid F_{\mathrm{d}}$.

The genxch Program. The Genxch program is a part of the software package that comes with NMR spectrometers manufactured by the Gencral Electric Corporation. It calculates lineshapes of NMR signals from protons undergoing $\mathbf{A}-\mathbf{B}$ exchange from one site (A) to another (B). With this program, which assumes that both A and B are singlets, the frequencies, linewidths, and relative amounts ($\% \mathrm{~A}=100-\% \mathrm{~B}$) of the two signals are entered. The mean lifetime is then varied until the calculated lineshape most closely resembles the observed lineshape. The exchange rate (k_{ex}) is then taken as the inverse of the mean lifetime τ. An Arrhenius plot ($\log k_{\text {ex }}$ vs $1 /$ temperature (in kelvins)) then gives a line whose slope is proportional to the activation barrier E_{a} for the A-B exchange process. For $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$, application of the GENXCH program to the pairs of singlets in Figures 7 and 8 was complicated by the presence of the nested doubled doublets, which caused interference at around $50{ }^{\circ} \mathrm{C}$. Nonctheless, the values obtained for this process are considered accurate to within about $\pm 20 \%$. Table SXVI gives the mean lifctimes in seconds for the bridging phenyl protons undergoing exchange in compounds $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$; Supplementary Figures I and 2 show the corresponding Arrhenius plots.

4-Nitro-3-pentanol. ${ }^{61}$ Propionaldehyde ($174 \mathrm{~g}, 3 \mathrm{~mol}$), isopropyl alcohol (400 mL), and finely ground KF ($25 \mathrm{~g}, 0.15 \mathrm{~mol}$) were added to a three-necked round-bottomed flask equipped with a mechanical slirrer, a thermometer, a dropping funnel, and a drying tube. Nitroethane (225.2 $\mathrm{g}, 3 \mathrm{~mol}$) was added dropwise with stirring, while the temperature of the solution was kept below $40^{\circ} \mathrm{C}$ with the aid of an ice bath. Fairly vigorous stirring was continued for 24 h . The catalyst was then removed by filtration and the filtrate concentrated under reduced pressure. The residuc was poured into water (500 mL) and the oil extracted with ether $(3 \times 300 \mathrm{~mL})$. The ethereal layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The remaining liquid was distilled in vacuo and the fraction boiling at 82-84 ${ }^{\circ} \mathrm{C}$ (5 Torr) was collected in a tared $1-\mathrm{L}$ round-bottomed flask to afford 4 -nitro-3-pentanol ($320 \mathrm{~g}, 2.4 \mathrm{~mol}, 80 \%$). The flask containing the product was used directly in the next step.

3-Acetoxy-2-nitropentane. ${ }^{62}$ To the above flask, containing 4-nitro-$3-$ pentanol ($320 \mathrm{~g}, 2.4 \mathrm{~mol}$) was added a magnetic stir egg and 1 mL of concentrated sulfuric acid. The contents of the flask were then stirred in an ice bath. and acetic anhydride ($255 \mathrm{~g}, 2.5 \mathrm{~mol}$) was added in portions, keeping the temperature of the reactants below $60^{\circ} \mathrm{C}$. When the addition of acetic anhydride was complete, the contents of the flask were stirred for one additional hour. The flask was then equipped for vacuum distillation. The lower boiling components ($\mathrm{Ac}_{2} \mathrm{O}$ and AcOH) were removed with a water aspirator by gently heating ($\leq 100^{\circ} \mathrm{C}$ bath temperature) the stirred contents of the flask. After these byproducts

[^9]were removed, the system was cooled, hooked up to a vacuum pump, and carefully heated. The fraction boiling at $90^{\circ} \mathrm{C}$ (5 Torr) was collected, affording 3 -acetoxy-2-nitropentane ($370 \mathrm{~g}, 2.1 \mathrm{~mol}, 89 \%$)

2-(Ethoxycarbonyl)-3-ethyl-4-methylpyrrole (23). To a stirred solution of 3 -acetoxy-2-nitropentane $(182.3 \mathrm{~g}, 1.04 \mathrm{~mol})$ and ethyl isocyanoacetate ($98 \mathrm{~g}, 0.87 \mathrm{~mol}$) in THF (620 mL)/IPA (250 mL) was added DBU ($294 \mathrm{~g}, 1.93 \mathrm{~mol}$) in portions while cooling in an ice bath so as to maintain a temperature of $20-30^{\circ} \mathrm{C}$ at all times. When the DBU addition was complete the orange solution was stirred for 4 h at room temperature. The solution was then filtered to remove the nitrite salt, and the solvent was removed on a rotary evaporator $\left(50^{\circ} \mathrm{C}\right.$ bath temp, water aspirator). The residue was poured into a 1-L beaker and diluted with acetic acid $(60 \mathrm{~g}, 1 \mathrm{~mol})$, followed by warm water $(350 \mathrm{~mL})$. Additional water was then added to the point where the solution remained cloudy, even after thorough stirring. Methanol (150 mL) was then added, and the clear solution thus obtained was covered and placed in the freezer for 12 h . The resulting precipitate was collected by filtration through a Buchner funnel, washed with $60 / 40(v / v)$ water/ methanol ($3 \times 200 \mathrm{~mL}$), and dried to give the crude product as white flakes ($102.3 \mathrm{~g}, 65 \%$) , mp $73-75^{\circ} \mathrm{C}$. This crude product may be used as is, or recrystallized from methanol to give pure material, $\mathrm{mp} 76^{\circ} \mathrm{C}$ (lit. ${ }^{460} \mathrm{mp} 76^{\circ} \mathrm{C}$).

Bis(4-ethyl-3-methyl-2-pyrryl)(2,5-dimethoxyphenyl)methane (35). In a $1-\mathrm{L}$ round-bottomed flask equipped with a sidearm was dissolved 2,5 dimethoxybenzaldehyde ($10 \mathrm{~g}, 0.06 \mathrm{~mol}$) and pyrrole $23(21.9 \mathrm{~g}, 0.12$ mol) in 80 mL absolute ethanol with stirring. The flask was purged with N_{2} and p-toluenesulfonic acid ($p-\mathrm{TsOH}$) $(0.5 \mathrm{~g})$ was added. The flask was then capped with a condenser and heated at reflux for 2 h under N_{2} with magnetic stirring. At the end of this time, TLC indicated complete conversion to what was presumed to be 34. The condenser was then removed and the ethanol solvent was evaporated from the flask by means of an N_{2} stream blown through the sidearm. When the ethanol was completely evaporated, ethylene glycol (500 mL) and $\mathrm{NaOH}(15 \mathrm{~g}, 0.375$ mol) were added and the oil bath replaced with a heating mantle. This mixture was held at reflux for 1 h under N_{2}, at a solution temperature of at least $180^{\circ} \mathrm{C}$. Next the heating mantle was removed and the flask was allowed to cool with vigorous stirring to room temperature. The solid was collected by filtration through a coarse fritted glass filter, washed with water, and dried to give pure $35(20.8 \mathrm{~g}, 94.6 \%)$: mp $128-130^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.2\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.8\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.4(\mathrm{q}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.6 and $3.7\left(\mathrm{~s}, \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.3(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}$, pyrrole CH), 6.6-6.9 (m, 3 H , phenyl ring), 7.6 ($\mathrm{brs}, 2 \mathrm{H}$, pyrrole NH); MS m/e 366 (48), 351 (35), 258 (100), 226 (49); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} 366.23071$, found 366.23140 .

Bis(4-ethyl-5-formyl-3-methyl-2-pyrryl) (2,5-dimethoxyphenyl)methane (36). The dipyrromethane 35 ($20 \mathrm{~g}, 0.055 \mathrm{~mol}$) was placed in a $250-\mathrm{mL}$ three-necked round-bottomed flask equipped with a N_{2} inlet, dropping funnel, stir bar, and thermometer. Dry DMF $(80 \mathrm{~mL})$ was added and the dipyrromethane dissolved. The solution was then cooled to $-20^{\circ} \mathrm{C}$ in a $\mathrm{CCl}_{4} /$ dry ice slush bath. Phosphoryl chloride $(26.1 \mathrm{~g}, 16 \mathrm{~mL}, 0.17$ mol) was then dropped into the stirred solution under N_{2} at a temperature between $-20^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$. After the addition was complete, the solution was stirred for 1 h while its temperature was allowed to rise to ca. $25^{\circ} \mathrm{C}$. The solution was then poured into water (500 mL) and made basic with $50 \% \mathrm{NaOH}$. The resulting tar was collected on a glass rod and cooled until solid. The solid was triturated in hot methanol (60 mL) containing NaOH (1 g). The resulting slurry was cooled, filtered, and washed with methanol to give the crude product. Recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ gave the pure product $(22.6 \mathrm{~g}, 95.5 \%)$: $\mathrm{mp} 208-210^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.28\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67(\mathrm{q}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.62 (s, 1 H, phenyl C-6), 6.82 (dd, 2 H , phenyl C-3 and C-4), 9.2 (br s, $2 \mathrm{H}, \mathrm{NH}$), 9.55 (s, $2 \mathrm{H}, \mathrm{CHO}$); MS m/e 422 (100), 393 (55), 365 (26); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} 422.2205$, found 422.2195.

Bis(4-ethyl-5-formyl-3-methyl-2-pyrryl)(2,4,6-dimethoxyphenyl)methane (45), 2,4,6-Trimethoxybenzaldehyde ($1 \mathrm{~g}, 5.1 \mathrm{mmol}$) and pyrrole $23(1.85 \mathrm{~g}, 10.2 \mathrm{mmol})$ were dissolved in methanol $(8 \mathrm{~mL})$ in a three-necked $100-\mathrm{mL}$ round-bottomed flask equipped with a condenser, N_{2} inlct, and thermometer. p-Toluenesulfonic acid (25 mg) was added and the flask contents held at reflux for 1 h under N_{2}. The methanol was then removed by a gentle stream of N_{2} blown through the flask. Ethylene glycol (50 mL) and $\mathrm{NaOH}(1.5 \mathrm{~g}, 38 \mathrm{mmol}$) were then added to the flask. The gentle N_{2} flow was resumed. The flask contents were held at $180^{\circ} \mathrm{C}$ for 10 min and then cooled. The ethylene glycol was poured off and the crude intermediate compound 44 was dissolved in hexane (75 mL). The hexane solution was washed with water $(3 \times 50 \mathrm{~mL})$ and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and the hexane was removed on a rotary evaporator to give $44(1.9 \mathrm{~g}, 4.8 \mathrm{mmol}, 94 \%)$ as a highly air- and light-sensitive brown glass. Compound 44 was immediately dissolved in dry DMF (10 mL) and transferred to a $50-\mathrm{mL}$ three-necked round-bottomed flask equipped with
a thermometer and a N_{2} inlet. Nitrogen was gently blown through the flask while the contents were cooled to $-10^{\circ} \mathrm{C}$ with a dry ice/acetonitrile slush bath. Phosphorus oxychloride ($1.3 \mathrm{~mL}, 14.4 \mathrm{mmol}$) was then added dropwise at $-10^{\circ} \mathrm{C}$. The solution was stirred for an additional 30 min as it warmed to room temperature. The solution was then poured into cold water (50 mL) and made basic with $50 \% \mathrm{NaOH}$. The crude product was allowed to harden and was then washed with water. Recrystallization from $\mathrm{McOH} / \mathrm{CHCl}_{3}$ gave product 45 as light brown crystals $(0.8$ $\mathrm{g}, 1.8 \mathrm{mmol}, 37 \%): \mathrm{mp} 203-205{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\delta 1.17\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $6.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.18(\mathrm{~s}, 2 \mathrm{H}$, phenyl), 9.04 (br s, 2 H, NH), 9.48 (s, $2 \mathrm{H}, \mathrm{CHO}$); MS m/e 452 (100), 422 (19), 316 (95), 285 (45). HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} 452.2311$, found 452.2368 .

1,4-Bis[bis[5-(ethoxycarbonyl)-4-ethyl-3-methyl-2-pyrryl]methyl]benzene (39), Terephthalaldehyde ($1 \mathrm{~g}, 7.46 \mathrm{mmol}$) and pyrrole $23(5.4$ $\mathrm{g}, 29.8 \mathrm{mmol}$) were dissolved in 100 mL of absolute ethanol. Concentrated $\mathrm{HCl}(5 \mathrm{~mL})$ was then added, and the solution was heated at reflux for 10 h under N_{2}. The resulting suspension was cooled, filtered, and washed with ethanol. Drying in vacuo gave pure $39(5.6 \mathrm{~g}, 91 \%)$ as a white powder: $\operatorname{mp} 237^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta 1.1\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25(\mathrm{t}$, $\left.12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.8\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 2.7\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.2(\mathrm{q}$, $8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.5 (s, $2 \mathrm{H}, \mathrm{CH}$), 7.1 (s, 4 H , phenyl ring), 8.6 (br s, $4 \mathrm{H}, \mathrm{NH}$); MS m/e 822 (100); HR MS calcd for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{8} 822.45677$, found 822.45772 .

1,3-Bis[bis[5-(ethoxycarbonyl)-4-ethyl-3-methyl-2-pyrryl]methyl]benzene (37). Isophthalaldehyde ($0.335 \mathrm{~g}, 2.5 \mathrm{mmol}$) and pyrrole 23 ($1.81 \mathrm{~g}, 10 \mathrm{mmol}$) were dissolved in 50 mL of absolute ethanol. Concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ was then added, and the solution was heated at reflux for 10 h under N_{2}. The resulting suspension was cooled overnight at $4^{\circ} \mathrm{C}$. It was then filtered and washed with ethanol. Drying in vacuo gave pure 37 ($1.92 \mathrm{~g}, 93 \%$) as a white powder: mp $178-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.08\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.74(\mathrm{~s}, 12$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 2.72\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.25\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.86(\mathrm{~s}, 2$ $\mathrm{H}, \mathrm{CH}), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}), 7.29(1 \mathrm{H}, \mathrm{t}, \mathrm{Ar}), 8.28(4$ H, s, NH); MS m/e 822 (72), 776 (100), 730 (66).

1,4-Bis[bis(4-ethyl-3-methyl-2-pyrryl)methyl]benzene (40), The tetraester $39(5.6 \mathrm{~g}, 6.8 \mathrm{mmol})$ was held at reflux $\left(\geq 180^{\circ} \mathrm{C}\right)$ in a solution of $\mathrm{NaOH}(10 \mathrm{~g}, 0.25 \mathrm{~mol})$ in ethylene glycol (500 mL) for 45 min under a N_{2} flow. The solution was then cooled with vigorous stirring to room temperature. The precipitate was collected by filtration, washed with water, and dried to give the pure product as a tan powder ($3.4 \mathrm{~g}, 93.4 \%$) $\mathrm{mp} 162-3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} N \mathrm{NR} \delta 1.1\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.75\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.4 (q, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.4(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 6.4$ (br s, 4 H , pyrrole CH), 7.1 (s, 4 H , phenyl ring); 7.3 (br s, 4 H , pyrrole NH). MS m/e 534 (46), 425 (100). HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{4} 534.37225$, found 534.37343 .

1,3-Bis/bis(4-ethyl-3-methyl-2-pyrryl)methylbbenzene (38). The tetraester 37 ($22 \mathrm{~g}, 26.7 \mathrm{mmol}$) was added to a 5 -L three-necked roundbottomed flask equipped with a paddle stirring apparatus, heating mantle, reflux condenser, and N_{2} inlet. To the flask was then added ethylene glycol (2.0 L), $\mathrm{NaOH}(20 \mathrm{~g}, 500 \mathrm{mmol})$, and water (50 mL). The N_{2} flow was commenced and the contents of the flask brought to reflux with stirring. Atmospheric oxygen must be excluded while the contents are heated. After 3.0 h at reflux the heating mantle was replaced by an ice bath. The product precipitated from solution and collected on the paddle as the temperature dropped. The solids obtained from the reaction were separated by filtration and were dissolved in hexane (300 mL). . The hexane solution was then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through Celite. The resulting clear yellow-brown solution was evaporated to dryness, first on a rotary evaporator, then under high vacuum, to give the product as a glass ($12.4 \mathrm{~g}, 87 \%$): $\mathrm{mp} 65{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\delta 1.10(\mathrm{t}, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.70\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.36(\mathrm{~s}, 2 \mathrm{H}$, CH), 6.29 (brs, 4 H , pyrrole CH), 6.88 ($\mathrm{s}, 2 \mathrm{H}$, phenyl ring), 6.98 (s , 1 H , phenyl ring), 7.11 (s, 1 H , phenyl ring); MS m/e 534 (47), 425 (84), 316 (100); HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{4} 534.37225$, found 534.3713 .
[5-(2,8-Diethyl-3,7,12.18-tetramethyl-13,17-di-n-propylporphyrinyl)]benzene $\left(\mathrm{H}_{4} \cdot 16\right)$. The α-free dipyrromethane $42(0.85 \mathrm{~g}, 2.77 \mathrm{mmol})$ and the diformyl dipyrromethane $30(0.85 \mathrm{~g}, 270 \mathrm{mmol})$ were dissolved in a $2: 1 \mathrm{MeOH} / \mathrm{THF}$ solution (200 mL) and degassed with N_{2}. Perchloric acid $(70 \%, 0.5 \mathrm{~mL})$ was added and the flask was stirred in the dark for 12 h . The solution was then neutralized with NaHCO_{3} in water and the organic components were extracted into chloroform. o-Chloranil (0.5 g , 4 mmol) in chloroform (10 mL) was added and the solution was stirred for 1 h . A saturated solution of zinc acetate in methanol (10 mL) was then added. and the chloroform solution was heated at reflux for 20 min After the solution was cooled, the product was washed with saturated $\mathrm{NaHCO} 3 / \mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to 10 mL on a rotary evaporator. The crude product was then redissolved in chloroform $(30 \mathrm{~mL})$ and passed through a $3 \times 50 \mathrm{~cm}$ column of silica gel $\left(\mathrm{CHCl}_{3}\right)$. The fasi running pink fraction was collected, concentrated to dryness on a rolary evapurator, and demetalated by stirring in $6: 1(\mathrm{v} / \mathrm{v})$ Irifluoro-
acetic acid/water (10 mL) for 12 h . The solution was then poured into chloroform (50 mL) and washed with saturated NaHCO_{3} until neutral. The chloroform layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to 10 mL on a rotary evaporator, and eluted through a $2 \times 40 \mathrm{~cm}$ silica gel column $\left(\mathrm{CHCl}_{3}\right)$. The main band was collected and recrystallized, first from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ and then from $\mathrm{CHCl}_{3} /$ hexane, to yield the product as a purple crystalline solid ($330 \mathrm{mg}, 20 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta-3.2$ (br s, $2 \mathrm{H}, \mathrm{NH}$), $1.34\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.39$ (sextuplet, 4 $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06$ (m, 8 $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.78(\mathrm{~m}, 3 \mathrm{H}$, phenyl H-3, H-4, H-5), 8.12 (d, 2 H , phenyl H-2, H-6), 9.97 (s, 1 H , meso), 10.20 (s, 2 H , meso); ${ }^{13} \mathrm{C}$ NMR $\delta 11.86,14.55$ (double), 17.59, 19.95, 26.17, 28.49, 95.67. $96.43,127.58,128.26,133.17,136.26,139.95,141.89,142.87,143.80$, 144.22, 145.92; MS m/e 582 (100) (calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} 582$); UV-vis $\lambda_{\text {max }}(\log \epsilon) 404(5.38), 503$ (4.31), 537 (4.01), 571 (3.99), 623 (3.66). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4}: \mathrm{C}, 82.43 ; \mathrm{H}, 7.96 ; \mathrm{N}, 9.61$. Found: C , 82.73; H, 7.90; N, 9.64. For $\mathrm{Zn} \cdot 16$: UV-vis $\lambda_{\text {max }}(\log \epsilon) 405$ (5.60), 535 (4.32), 571 (4.21).

1,4-Bis[5-(13,17-di-n-butyl-2,8-diethyl-3,7,12,18-tetramethylporphyrinyl)]benzene ($\mathrm{H}_{4}, \mathbf{2}$). The diformyl dipyrromethane $33(4.36 \mathrm{~g}$, 12.7 mmol) and the 1,4 -phenyl-linked α-free dipyrromethane 40 (3.41 $\mathrm{g}, 6.4 \mathrm{mmol}$) were dissolved in hot THF (200 mL) and diluted to 1200 mL with methanol. The solution was bubbled with N_{2} for 5 min , and perchloric acid $(70 \%, 5 \mathrm{~mL})$ was then added. The solution was allowed to sit in the dark for 24 h . It was then neutralized with saturated NaOAc in methanol, and a solution of o-chloranil ($2.35 \mathrm{~g}, 9.5 \mathrm{mmol}$) in methanol (25 mL) was added. The mixture was stirred for 30 min and partitioned between water and chloroform. The chloroform layer was washed several times with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. A saturated solution of zinc acetate in methanol (40 mL) was added, the solution was heated at reflux for 20 min , and it was then washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and water ($3 \times 200 \mathrm{~mL}$). The solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to ca .50 mL on a rotary evaporator. After sitting for several hours, the solution was filtered through a medium frit and the pink solid (ca. 160 mg) which separated was dissolved in concentrated sulfuric acid (30 mL) in a $1-\mathrm{L}$ separatory funnel. Chloroform (300 mL) was added, followed by water (300 mL) (Caution! Exothermic!). The funnel was stoppered and slowly inverted so as to prevent immediate recombination of the sulfuric acid and water layers. After venting once, the funnel was then shaken and vented several times. The chloroform layer was removed and the aqueous layer was extracted with 100 mL portions of chloroform until colorless. The chloroform layers were combined and neutralized by stirring with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution for 20 min . The chloroform solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to 40 mL on a rotary evaporator, and passed through a $3 \times 50 \mathrm{~cm}$ silica gel column $\left(\mathrm{CHCl}_{3}\right.$ eluent). The product was collected and recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, followed by $\mathrm{CHCl}_{3} /$ hexanes to give the product as purple crystals, 60 mg (8%): ${ }^{1} \mathrm{H}$ NMR $\delta-2.9$ (br s, $4 \mathrm{H}, \mathrm{NH}$), 1.17 (t, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.83 (sextuplet, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.91 (t, $12 \mathrm{H}, \mathrm{ClH}_{2} \mathrm{CH}_{3}$), $2.32\left(\mathrm{p}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.16(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.69\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.175(\mathrm{q}$, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 8.54 (s, 4 H , phenyl), 9.94 (s, 2 H, meso), 10.26 (s, 4 H, meso); ${ }^{13} \mathrm{C}$ NMR $\delta 11.83,14.25,17.67,20.10,23.14,26.25,35.27$, $95.79,96.70,118.94,133.81,135.60,136.23,140.29,141.68,142.47$, 143.75, 144.19, 145.11, 146.14; UV-vis $\lambda_{\max }(\log \epsilon) 413$ (5.51), 506 (4.46), 540 (4.95), 574 (4.00), 625 (3.15). Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{94} \mathrm{~N}_{8}$: C, $81.92 ; \mathrm{H}, 8.28 ; \mathrm{N}, 9.80$. Found: $\mathrm{C}, 81.84 ; \mathrm{H}, 8.35 ; \mathrm{N}, 9.61$. For $\mathrm{Zn}_{2} \cdot \mathbf{2}$: UV-vis $\lambda_{\max }(\log \epsilon) 410 \mathrm{sh}(5.52), 419$ (5.61), 540 (4.54), 574 (4.41).

1,3-Bis[5-(13,17-di-n-propyl-2,8-diethyl-3,7,12,18-tetramethylporphyrinyl)]benzene $\left(\mathrm{H}_{4} \cdot \mathbf{1}\right)$. Compound $\mathrm{H}_{4} \cdot 1$ was prepared in 12% yield from α-free bisdipyrromethane 38 and diformyl dipyrromethane 30 in an analogous fashion to that used to prepare flat porphyrin $\mathrm{H}_{4} \cdot \mathbf{2}$: ${ }^{1} \mathrm{H}$ NMR $\delta-3.0$ (br s, $4 \mathrm{H}, \mathrm{NH}$), $1.22\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.72(\mathrm{t}, 12$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.07\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.55$ (s, $\left.12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.99\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.82(\mathrm{~s}, 1 \mathrm{H}$, phenyl H-2), $8.27(\mathrm{t}, 1 \mathrm{H}$, phenyl $\mathrm{H}-5), 8.90(2 \mathrm{H}$, d, phenyl $\mathrm{H}-4$ and $\mathrm{H}-6), 9.78$ (s, 2 H , meso), 10.04 (s, 4 H , meso); ${ }^{13} \mathrm{C}$ NMR $\delta 11.8,14.5,17.2,20.2,26.1$, $28.3,34.1,96.0,96.4,118.0,125.6,127.6,133.8,135.3,136.2,140.0$, 141.0, 141.9, 143.7, 144.8, 145.2, 146.1; UV-vis $\lambda_{\text {max }}(\log \epsilon) 407.5(5.62)$, 506 (4.36), 540.5 (4.44), 575 (4.35), 627 (3.50). Anal. Calcd for $\mathrm{C}_{74} \mathrm{H}_{86} \mathrm{~N}_{8}$: C, $81.68 ; \mathrm{H}, 7.97 ; \mathrm{N}, 10.30$. Found: C, $81.68 ; \mathrm{H}, 8.11 ; \mathrm{N}$, 10.08. For $\mathrm{Zn}_{2} \cdot 1$: UV-vis $\lambda_{\text {max }}(\log \epsilon) 404.5$ (5.58), 420 (5.48), 540 (4.43), 574 (4.34).
[5-[2,8,12,18-Tetraethyl-15-(2,5-dimethoxyphenyl)-3,7,13,17-tetramethylporphyrinyl]benzene ($\mathrm{H}_{2} \cdot 18$). The α-free dipyrromethane 42 (0.56 $\mathrm{g}, 1.83 \mathrm{mmol})$ and diformyl dipyrromethane $36(0.77 \mathrm{~g}, 1.83 \mathrm{mmol})$ were dissolved in hot THF (30 mL) and diluted to 350 mL with methanol in a $500-\mathrm{mL}$ round-bottomed flask. The flask was bubbled with N_{2} for 5 min, and perchloric acid ($70 \%, 3 \mathrm{~mL}$) was added. The flask was shaken
vigorously and placed in the dark for 24 h . The contents of the flask were then neutralized with a saturated solution of NaOAc in methanol (50 mL) . o-Chloranil ($1.35 \mathrm{~g}, 5.5 \mathrm{mmol}$) in methanol (10 mL) was then added, and the contents of the flask were stirred magnetically for 1 h and then poured into a 2-L separatory funnel. Water (500 mL) and chloroform (500 mL) were added to the funnel, which was shaken and vented. The organic layer was washed several more times with water and transferred to a 1-L round-bottomed flask. Cupric acetate (1 g) was added to the flask, and the contents of the flask were heated at reflux under N_{2} for 1 h . The solution was then filtered through Celite, washed with water ($3 \times 200 \mathrm{~mL}$), dried over MgSO_{4}, concentrated to 30 mL on a rotary evaporator and then filtered through silica gel $\left(\mathrm{CHCl}_{3}\right)$. The red fractions containing $\mathrm{Cu}-18$ were collected and transferred to a separatory funnel. Demetalation was accomplished as follows: Sulfuric acid (3 mL) was added to the funnel, which was stoppered and shaken vigorously for 5 min . The funnel was allowed to sit for a minute so the acid would settle to the bottom, and water (100 mL) was added carefully to the funnel (Caution! Exothermic!). The funnel was next carefully inverted and vented and shaken and vented several more times. The chloroform was drained off, and the aqueous layer was extracted with $50-\mathrm{mL}$ aliquots of chloroform until the extracts were pale. The chloroform extracts were combined and neutralized with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated on a rotary evaporator, and passed through a silica gel column ($1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$). The product was collected and recrystallized first from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ and then $\mathrm{CHCl}_{3} /$ hexane to give $\mathrm{H}_{2} \cdot 18(0.5 \mathrm{~g}, 40 \%)$ as a dark powder: ${ }^{1} \mathrm{H}$ NMR $\delta-2.35$ (br s, $2 \mathrm{H}, \mathrm{NH}$), $1.79\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{~m}, 8$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.76(\mathrm{~m}, 3 \mathrm{H} . \mathrm{H}-3, \mathrm{H}-4$, and $\mathrm{H}-5$ of $\mathrm{C}_{6} \mathrm{H}_{5}$-(porph), 8.10 (dd. $2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-6$ of $\mathrm{C}_{6} \mathrm{H}_{5}$-(porph)), 10.23 (s, 2 H. meso); ${ }^{13} \mathrm{C}$ NMR $\delta 13.63,14.31,17.60,19.96,26.91$, $56.08,96.35,111.90,113.40,115.12,118.02,120.37,127.58,128.21$, 132.97, 135.63, 135.77, 140.96, 141.06, 144.45, 145.37, 153.76, 153.95; MS m/e 690 (100) (calcd for $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2} 690$); UV-vis $\lambda_{\text {max }}(\log$ t) 409 (5.37), 507 (4.40), 541 (4.09), 574 (4.14), 626 (3.87). Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 79.96: \mathrm{H}, 7.29$: $\mathrm{N}, 8.11$. Found: $\mathrm{C}, 80.03 ; \mathrm{H}, 7.46 ; \mathrm{N}$, 7.85. For $\mathrm{Zn} \cdot 18$: UV-vis $\lambda_{\text {max }}(\log \epsilon) 411$ (5.61), $540(4.42), 576(4.22)$.
[5-[2.8.12.18-Tetraethyl-15-(2.5-dihydroxyphenyl)-3.7,13.17-tetramethylporphyrinyl]|benzene $\left(\mathrm{H}_{2} \cdot 19\right)$ and [5-[15-[2'-($1^{\prime}, 4^{\prime}$-benzoquinonyl) -2.8.12.18-tetraethyl-3.7.13.17-tetramethylporphyrinyl]benzene $\left(\mathrm{H}_{2} \cdot 17\right)$. The bis-hydroquinone ether $\mathrm{H}_{2} \cdot 18(40 \mathrm{mg}, 0.058 \mathrm{mmol})$ was dissolved in dry dichloromethane (5 mL) and placed in a $50-\mathrm{mL}$ roundbottomed flask equipped with a N_{2} inlet. $\mathrm{BBr}_{3}(0.5 \mathrm{~mL})$ was added and the flask was stirred in the dark under N_{2} at room temperature for 3 h . The contents of the flask were diluted to 25 mL with dichloromethane The BBr_{3} was then quenched by cautious dropwise addition of methanol (Caution! Violently exothermic!). To the flask was then added 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$. The flask was stirred for 30 min , and the liquids were separated, along with a solid at the liquid/liquid interface. The organic layer and the solid were passed through a medium fritted glass filter. The organic layer was taken to dryness on a rotary evaporator. The solid, which collected on the frit, was redissolved in 5% methanol $/ \mathrm{CHCl}_{3}$ (20 mL) and added to the dried organic layer. The resulting solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to 5 mL , and passed through a 1 cm $\times 25 \mathrm{~cm}$ silica gel column, with at first $5 \% \mathrm{MeOH}$ in CHCl_{3}, and then after the first two minor bands had eluted, $10 \% \mathrm{MeOH}$ in CHCl_{3} as the eluents. The slow major band was collected and concentrated to dryness on a rotary evaporator to yield the intermediate hydroquinone H_{2}. 19 in crude form ($24 \mathrm{mg}, 51 \%$). This crude material was not purified further but was converted directly to the quinone $\mathrm{H}_{2} \cdot 17$ in quantitative yield by the following method: The hydroquinone $\mathrm{H}_{2} \cdot 19$ ($24 \mathrm{mg}, 0.030 \mathrm{mmol}$) was dissolved in $1 \% \mathrm{McOH} / \mathrm{CHCl}_{3}(2 \mathrm{~mL})$ and was stirred for 5 min with a solution of DDQ ($10 \mathrm{mg}, 0.045 \mathrm{mmol}$) in $1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ (mL) that contained tricthylamine (1 drop). The resulting solution was passed through silica gel ($1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ eluent) and the major band was collected and recrystallized from $\mathrm{CHCl}_{3} /$ hexane. The product was recovered quantitatively as a purple crystalline powder: ${ }^{1} \mathrm{H}$ NMR $\delta-2.39$ (br, $2 \mathrm{H}, \mathrm{NH}$). $\mathrm{I} .78\left(\mathrm{t} .6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.82\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.49$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.16\left(\mathrm{~s} .6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.04\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 7.37 (m, 3 H . quinone $\mathrm{C}-\mathrm{H} 3,-\mathrm{H} 5$, and $-\mathrm{H} 6), 7.78(\mathrm{~m}, 3 \mathrm{H}$, phenyl $\mathrm{C}-\mathrm{H} 3$, -H 4 , and -H 5). 8.06 (dd (7 H 7), 2 H , phenyl C-H2, and -H 6), 10.25 (s, 2 H , meso): ${ }^{13} \mathrm{C}$ NMR $\delta 14.31,16.42,17.54,17.63,19.92,19.98,97.15$ 106.22. 119.4. 127.73, 128.41, 132.79, 133.16, 136.43, 137.11, 137.86, $139.54,141.14,141.50,142.00,144.49,144.81,145.26,145.59,150.15$ 187.32. 188.98: MS m/e calcd for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{2} 662$, found 666 (37), 664 (26), 662 (35), 318 (27); UV-vis $\lambda_{\text {max }}(\log \epsilon) 406$ (5.39), 504 (4.39). 538 (4.05), 573 (3.99), 624 (3.67). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C}$ 77.62; H, 7.11: N, 8.30. Found: C, 77.65: H, 6.39; $\mathrm{N}, 8.15$. For $\mathrm{Zn} \cdot 17$: UV-vis $\lambda_{\text {max }}(\log \epsilon) 415(5.62), 541$ (4.40), 575 (4.17)
[5-(2,8-Diethyl-3,7,12,18-tetramethyl-13,17-di-n-propylporphyrinyl) $\mathbf{2}$ 2,5-dimethoxybenzene ($\mathrm{H}_{2}, 21$). The α-free dipyrromethane $29(0.67 \mathrm{~g}, 258 \mathrm{mmol})$ and diformyl dipyrromethane $36(1.09 \mathrm{~g}, 258$ mmol) were dissolved in hot THF (50 mL) in a $500-\mathrm{mL}$ round-bottomed flask and the solution was diluted to 450 mL with methanol. The solution was bubbled for 5 min with N_{2}, and then perchloric acid (5 mL) was added to the flask, which was stoppered, shaken, and placed in the dark for 24 h . The contents of the flask were then neutralized with a saturated solution of $\mathrm{NaOAc} / \mathrm{MeOH} . o$-Chloranil ($0.95 \mathrm{~g}, 307 \mathrm{mmol}$) was then added, and the contents of the flask were magnetically stirred in the dark for 36 h . The purple suspension that resulted was separated by filtration through a medium fritted glass filter, washed with methanol, and dried to give nearly pure product ($1.3 \mathrm{~g}, 78 \%$). Samples for analysis were purified by chromatography (silica gel/ CHCl_{3} eluent) and recrystallized from CHCl_{3} /hexane: ${ }^{1} \mathrm{H}$ NMR $\delta-3.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-3.15(\mathrm{~s}, 1 \mathrm{H}$, NH), $1.32\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.79\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36$ (sextuplet, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.3\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 9.94(\mathrm{~s}, 1 \mathrm{H}$, meso), 10.16 (s, 2 H , meso); ${ }^{13} \mathrm{C}$ NMR δ 11.84, 13.81, 14.54, 17.62, 19.96, 26.16, 28.50, $56.07,95.72,96.28,111.91,114.52,115.06,120.57,132.42,135.94$, 136.11, 139.81, 141.85, 143.68, 144.05, 144.41, 145.64, 153.82, 153.98; MS m / e calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2} 642$, found 642 (100); HRMS calcd 642.39338 , found 642.39362; UV-vis $\lambda_{\text {max }}(\log \epsilon) 404$ (5.28), 503 (4.24), 538 (3.96), 571 (3.95), 623 (3.69). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}$, 78.47; H, 7.84; N, 8.72. Found: C, 77.91; H, 7.45; N, 8.90
[5-(2,8-Diethyl-3,7,12,18-tetramethyl-13,17-di-n-propyl-porphyrinyl)]-2,5-dihydroxybenzene ($\mathrm{H}_{2} \cdot 22$) and 2-[5-(2,8-Diethyl-3,7,12,18-tetramethyl-13,17-di-n-propylporphyrinyl)]-1,4-dioxo-2,5cyclohexadiene $\left(\mathrm{H}_{2}, 20\right)$. The hydroquinone ether $\mathrm{H}_{2} \cdot 21$ was demethylated and oxidized according to the procedure used to prepare quinone $\mathrm{H}_{2} \cdot 17$. The yield of $\mathrm{H}_{2} \cdot 20$ was 70% : ${ }^{1} \mathrm{H}$ NMR $\delta-3.42$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), -3.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $1.20\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.71\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2.24 (sextuplet, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.54(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.94\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.16(\mathrm{~s}, 1 \mathrm{H}$, quinone $\mathrm{H}-6$), 7.27 (dd, 2 H , quinone $\mathrm{H}-3$ and $\mathrm{H}-4$), 9.88 (s, 1 H , meso), 10.07 (s, 2 H , meso); UV-vis $\lambda_{\text {max }}(\log \epsilon) 402.5$ (5.32), 501 (4.27), 534 (4.10), 571 (3.94), 623 (3.77). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.40$; $\mathrm{H}, 7.24$; N, 9.14. Found: C, 78.62; H, 7.44; N, 9.12. For $\mathrm{Zn} \cdot 20$: UV-vis $\lambda_{\max }(\log \epsilon) 410.5(5.60), 538$ (4.31), 575 (4.25). The X-ray crystal structure of $\mathrm{H}_{2} \cdot \mathbf{2 0}$ described above provides additional evidence for the structure of this compound.

1,3-Bis [5-[2,8,12,18-tetraethyl-15-(2,5-dimethoxyphenyl)-3,7,13,17tetramethylporphyrinyl]]benzene $\left(\mathrm{H}_{4} \cdot 5\right)$. Dialdehyde $36(0.63 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ and α-free dipyrromethane $38(0.4 \mathrm{~g}, 0.75 \mathrm{mmol})$ were dissolved in methanol (200 mL) in a $250-\mathrm{mL}$ round-bottomed flask, and the solution was purged with N_{2}. Perchloric acid ($70 \%, 2 \mathrm{~mL}$) was added to the flask, which was shaken vigorously and allowed to sit in the dark for 24 h . A saturated solution of sodium acetate in methanol (20 mL) was then added followed by a solution of o-chloranil in $\mathrm{MeOH}(87 \mathrm{mg}, 2.25$ mmol). After it was stirred in the dark for several hours, the reaction mixture was poured into water (300 mL) and extracted with $100-\mathrm{mL}$ portions of chloroform until the extracts were pale in color. After the organic layer was dried over MgSO_{4} and filtered, a saturated solution of cupric acetate in MeOH (10 mL) was added and the mixture was heated at reflux for 20 min . The solution was cooled, washed with water $\left(3 \times 100 \mathrm{~mL}\right.$), and dried over MgSO_{4}. The solution volume was concentrated to 30 mL on a rotary evaporator and was passed through silica gel (CHCl_{3} eluent). The fast-running red component $\mathrm{Cu}_{2} \cdot 5$ was collected and transferred to a separatory funnel. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$ was added, and then the funnel was stoppered and shaken vigorously for 5 \min. Water (100 mL) was carefully added to the funnel, which was then restoppered, inverted, vented, and shaken and vented several more times (Caution! Pressure buildup!). The chloroform was drawn off and the aqueous portion was extracted with $40-\mathrm{mL}$ portions of chloroform until the eluents were pale in color. The chloroform extracts were combined and neutralized with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The chloroform layer was then dried over MgSO_{4}, filtered through Celite, concentrated to 20 mL on a rotary evaporator, and eluted through silica (CHCl_{3}, eluent). The main band was collected and recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to give pure $\mathrm{H}_{4} \cdot 5(80 \mathrm{mg}, 8 \%)$ as a purple crystalline solid: ${ }^{1} \mathrm{H}$ NMR $\delta-2.12(4 \mathrm{H}$, br s, NH), 1.73 (m, $24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.55\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.08$ ($\mathrm{s}, 12$ $\mathrm{H}, \mathrm{CH}_{3}$), 3.5 to 3.9 (br m, $\left.12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.98(\mathrm{~m}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.16\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-3\right.$ and $\mathrm{H}-4$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.28(\mathrm{~s}, 2 \mathrm{H}$ $\mathrm{H}-6$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}$, bridging phenyl $\mathrm{H}-2), 8.28(\mathrm{t}, 1 \mathrm{H}$ bridging phenvl $\mathrm{H}-5$), 8.88 (s, 2 H , bridging phenyl $\mathrm{H}-4$ and $\mathrm{H}-6$), 10.11 (s. 4 H , meso) ${ }^{13} \mathrm{C}$ NMR $\delta 13.5,17.2,17.4,17.6,19.9,20.0,56.0,96.5$ 111.9, 113.6, 115.1, 117.2, 120.2, 125.5, 131.7, 133.5, 134.8, 135.6, 140.6 140.7, 140.9. 141.9, 144.4, 144.7, 145.4, 145.8, 153.6, 153.9; FAB MS (glycerol/oxalic acid) shows a cluster of peaks at 1303-1308 amu (calcd
for $\mathrm{C}_{86} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O} \cdot \mathrm{H}^{+} 1304$); UV-vis $\lambda_{\text {max }}$ (log $\left.\epsilon\right) 415.5(5.53), 511.5(4.52)$, 545 (4.08), 578 (4.12), 629.5 (3.15). Anal. Calcd for $\mathrm{C}_{86} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{4}$: C, 79.23; H, 7.27; N, 8.60. Found: C, 78.96; H, 7.61; N, 8.87. The X-ray structure of $\mathrm{Cu}_{2} \cdot 5 \cdot\left(1.5 \mathrm{CHCl}_{3}\right) \cdot\left(0.5 \mathrm{CH}_{3} \mathrm{OH}\right)$ (see above) provides inter alia a further characterization of $\mathrm{H}_{4} \cdot 5$.

1,4-Bis [5-[2,8,12,18-tetraethyl-15-(2,5-dimethoxyphenyl)-3,7,13,17tetramethylporphyrinyl] benzene $\left(\mathrm{H}_{4} \cdot 6\right)$. The flat bis-hydroquinone ether $\mathrm{H}_{4} \cdot 6$ was prepared from 40 and 36 in the same fashion used to prepare the gable bis-hydroquinone ether $\mathrm{H}_{4} \cdot 5$ from 38 and 36 (yield, 8%): ${ }^{1} \mathrm{H}$ NMR $\delta-1.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),-1.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 1.86(\mathrm{t}, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.91\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23(\mathrm{~s}, 12 \mathrm{H}$, CH_{3}), $3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 4.09$ (m, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.19 (q, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.29 (s, $2 \mathrm{H}, \mathrm{H}-6$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.37\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-4\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 8.60\left(\mathrm{dd}(9 \mathrm{~Hz})\right.$, (porph) $\left.2-\mathrm{C}_{6} \mathrm{H}_{4}\right), 10.33(\mathrm{~s}, 4 \mathrm{H}$, meso); ${ }^{13} \mathrm{C}$ NMR $\delta 13.43,17.18,17.48,19.83,19.96,55.89,96.41$, $111.74,113.49,114.95,117.76,120.13,128.63,130.69,131.53,133.27$, $135.22,135.52,140.60,140.87,142.08,144.32,145.38,145.55,153.54$, 153.79; FAB MS (glycerol/oxalic acid matrix) shows a cluster of peaks at 1303-1 305 amu (calcd for $\mathrm{C}_{86} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}^{+}$1303); UV-vis $\lambda_{\max }$ (log є) 418.7 (5.72), $510(4.66), 543(4.32), 576(4.35), 627$ (3.90). Anal. Calcd for $\mathrm{C}_{86} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{4}: \mathrm{C}, 79.23 ; \mathrm{H}, 7.27 ; \mathrm{N}, 8.60$. Found: C, 78.96 ; H, 7.61; N, 8.87.

1,4-Bis 5 -[2,8.12,18-tetraethyl-15-(2,4,6-trimethoxyphenyl)-3,7,13,17tetramethylporphyrinyl]]benzene $\left(\mathrm{H}_{4}, 9\right)$. The flat bis ether $\mathrm{H}_{4} 9$ was prepared from 40 and 45 in the same fashion used to prepare the gable bis-hydroquinone ether $\mathrm{H}_{4} \cdot 5$ from 38 and 36 (yield, 3%): ${ }^{1} \mathrm{H}$ NMR δ $-1.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),-1.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 1.85\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.90$ $\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.72\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.21\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 3.58(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{OCH}_{3}\right)_{3}\right), 4.08\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}-\right.$ $\left.\left(\mathrm{OCH}_{3}\right)_{3}\right), 4.17\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{OCH}_{3}\right)_{2}\right), 8.58$ (s, (porph) $)_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$), 10.27 (s, 4 H , meso); FAB MS (3-nitrobenzyl alcohol) shows a sharp cluster of peaks at 1363-1365 amu (calcd for $\mathrm{C}_{88} \mathrm{H}_{98} \mathrm{~N}_{8} \mathrm{O}_{6} \cdot \mathrm{H}^{+}$1363); HRMS calcd for $\mathrm{C}_{88} \mathrm{H}_{98} \mathrm{~N}_{8} \mathrm{O}_{6} \cdot \mathrm{H}^{+} 1363$); HRMS calcd for $\mathrm{C}_{88} \mathrm{H}_{98} \mathrm{~N}_{8} \mathrm{O}_{6} \cdot \mathrm{H}^{+}$1363.7688, found 1363.7427 ; UV-vis $\lambda_{\text {max }} 415$, 445 (sh), $508,540,575,627$. As with $\mathrm{H}_{4} \cdot 5$, the X -ray structure of $\mathrm{Cu}_{2} \cdot 9 \cdot\left(2 \mathrm{CHCl}_{3}\right)$ (see above) provides a further proof of structure for $\mathrm{H}_{4} \cdot 9$.

1,3-Bis[5-[2.8.12.18-tetraethyl-15-(2,5-dihydroxyphenyl)-3,7,13,17tetramethylporphyrinyl] benzene $\left(\mathrm{H}_{4} \cdot 7\right)$ and 1,3 -Bis $\left[5-\left[15-\left[2^{\prime}\right.\right.\right.$-($1^{\prime} . \mathbf{4}^{\prime}$ benzoquinonyl) $\mathbf{2 , 8 . 1 2 , 1 8}$-tetraethyl-3,7,13,17-tetramethylporphyrinyl]]benzene ($\mathrm{H}_{4} \cdot 3$). The bis-hydroquinone ether $\mathrm{H}_{4} .5(50 \mathrm{mg}, 0.038 \mathrm{mmol})$ was dissolved in dry dichloromethane (5 mL) in a $50-\mathrm{mL}$ round-bottomed flask equipped with a N_{2} inlet. $\mathrm{BBr}_{3}(0.5 \mathrm{~mL})$ was added, and the flask was stirred in the dark under N_{2} at room temperature for 3 h . The contents of the flask were then diluted to 25 mL with dichloromethane. The BBr_{3} was then quenched by cautious dropwise addition of methanol (Caution! Violently exothermic!). To the flask was then added a 10% w / v solution of aqucous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$. The flask was stirred for 30 min , and the liquids were separated, along with a solid at the liquid/liquid interface. The organic layer and the solid were passed through a medium fritted glass filter. The organic layer was taken to dryness on a rotary evaporator. The solid, which collected on the frit, was redissolved in 5% methancl/ $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and was added to the dried organic layer. The resulting solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to 5 mL , and passed through a $1 \mathrm{~cm} \times 25 \mathrm{~cm}$ silica gel column, with at first $5 \% \mathrm{MeOH}$ in CHCl_{3}, and then, after the first two minor bands had eluted, 10% McOH in CHCl_{3} as the eluents. The slow major band was collected and concentrated to dryness on a rotary evaporator to yield the intermediate hydroquinone $\mathrm{H}_{4} 7$ in crude form ($24 \mathrm{mg}, 51 \%$). This crude material was not purified further but was converted directly to the bis-quinone $\mathrm{H}_{4} \cdot 3$ in near quantitative yicld by the method described under the synthesis of $\mathrm{H}_{2} \cdot 17$. For $\mathrm{H}_{4} \cdot 7$: FAB MS (glycerol/oxalic acid matrix) shows a cluster of peaks at 1247-1251 a mu (calcd for $\mathrm{C}_{82} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}^{+}$1247) For $\mathrm{H}_{4} \cdot 3$: ${ }^{1} \mathrm{H}$ NMR $\delta-2.27(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),-2.20(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 1.77(\mathrm{~m}$ $24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.08 (s, $12 \mathrm{H}, \mathrm{CH}_{3}$), $3.13\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.02(\mathrm{~m}, 16$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.30(\mathrm{~m}, 6 \mathrm{H}$, quinone), 8.05 (br s, $1 \mathrm{H}, \mathrm{H}-2$ of (purph) $2_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$), $8.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5 \text { of (porph) })_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$), 8.90 (br s, 2 H, $\mathrm{H}-4$ and $\mathrm{H}-6$ of (porph) $)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$), 10.15 (s, 4 H , meso) $;{ }^{13} \mathrm{C}$ NMR $\delta 16.2$, $17.1,17.3,17.6,20.0$ (double), 97.2 ، 106.2, 118.4, 125.6, 133.0, 133.5, $135.3,137.0,137.8,139.2,140.3,141.1,141.3,141.7,144.4,145.0,145.5$ 145.9, 149.9, 187.0, 188.8; FAB MS (glycerol/oxalic acid matrix) shows a cluster of peaks from 1243.6 to 1249.6 amu (calcd for $\mathrm{C}_{82} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{4}$ 1243.6); UV-vis $\lambda_{\max }(\log \epsilon) 417$ (5.46), 510 (4.41), 543 (4.10), 579 (4.02), 630 (3.58). Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.97 ; \mathrm{H}$, 6.77; $\mathrm{N}, 8.76$. Found: $\mathrm{C}, 76.25 ; \mathrm{H} .6 .58$; $\mathrm{N}, 8.42$. For $\mathrm{Zn}_{2} \cdot 3$: UV-vis $\lambda_{\max }(\log \varepsilon) 410(5.53), 427$ (5.49), 545 (4.41), 579 (4.12).
1.4-Bis 5 -[2,8,12,18-tetraethyl-15-(2,5-dlhydroxyphenyl)-3.7.13,17tetramethylporphyrinyl]benzene $\left(\mathrm{H}_{4}, 8\right)$ and 1,4 - $\mathrm{Bis}\left[5-\left[15-\left[2^{\prime}-\left(1^{\prime}, 4^{\prime}\right.\right.\right.\right.$ benzoquinonyl) $-2,8,12,18$-tetraethyl-3,7.13.17-tetramethylporphyrinyl|f-
benzene $\left(\mathbf{H}_{4} \cdot \mathbf{4}\right)$. The tetramethoxy-protected bis-hydroquinone $\mathrm{H}_{4} \cdot 6(50$ $\mathrm{mg}, 0.038 \mathrm{mmol}$) was demethylated with BBr_{3} by the same procedure described above for the preparation of $\mathrm{H}_{4} \cdot 7$. In this case, the intermediate hydroquinone $\mathrm{H}_{4} \cdot 8$ proved insoluble in most organic solvents. This complicated isolation and precluded purification. As a result, the suspension of $\mathrm{H}_{4} \cdot 8$ in chloroform, which was obtained following quenching of the BBr_{3} reaction, was treated directly with a 1.5 M excess of DDQ in the presence of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The quinone $\mathrm{H}_{4} \cdot 4$ dissolved as it formed. When all the porphyrinic material had dissolved, the solution was filtered and concentrated to 15 mL on a rotary evaporator and was then passed through a silica gel column $\left(\mathrm{CHCl}_{3}\right.$ eluent). The product was recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ followed by $\mathrm{CHCl}_{3} /$ hexane to give product $\mathrm{H}_{4} .4$ ($35 \mathrm{mg}, 72 \%$) as light brown fluffy needles: ${ }^{1} \mathrm{H}$ NMR $\delta-1.9$ (br, $4 \mathrm{H}, \mathrm{NH}), 1.88\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.19\left(\mathrm{~s}, \mathrm{~s}, 24 \mathrm{H}, \mathrm{CH}_{3}\right), 4.14(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.4 (m, 6 H , quinone), 8.59 (dd, 4 H , (porph) $2_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$), 10.34 ($\mathrm{s}, 4 \mathrm{H}$, meso); ${ }^{13} \mathrm{C}$ NMR $\delta 16.33,17.33,17.65,20.03,20.10$, $97.40,106.48,119.14,133.33,133.46,133.50,135.93,137.18,137.90$, $139.55,141.20,141.34,142.13,144.72,144.91,145.71,146.05,150.03$, 187.30, 188.93; FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1243-1251 amu (calcd for $\mathrm{C}_{82} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}^{+}$1243); UV-vis $\lambda_{\max }(\log \epsilon) 416(5.77), 507.5(4.74), 540(4.40), 576(4.39), 625(4.13)$. Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.96 ; \mathrm{H}, 6.77$; $\mathrm{N}, 8.76$. Found: C, $76.59 ; \mathrm{H}, 6.52 ; \mathrm{N}, 8.44$. For $\mathrm{Zn}_{2} 4$: UV-vis $\lambda_{\max }(\log \epsilon) 421.5$ (5.81), 541 (4.56), 577 (4.37).

1-[5-[2,8,12,18-Tetraethyl-15-(2,5-dimethoxyphenyl)-3,7,13,17-tetra-methylporphyrinyl]]-3-[5-(2,8-diethyl-3,7,12,18-tetramethyl-13,17-di-npropylporphyrinyl) benzene ($\mathrm{H}_{4} \cdot 12$). Dialdehyde 36 ($1.58 \mathrm{~g}, 3.74 \mathrm{mmol}$) and bis(5-formyl-4-methyl-3-propyl-2-pyrryl)methane ${ }^{43}$ (30) (1.17 g, $3.74 \mathrm{mmol})$ were dissolved in hot THF (250 mL) in a $1-\mathrm{L}$ round-bottomed flask and diluted to 700 mL with methanol. 1,3-Bis[bis(4-ethyl-3-methyl-2-pyrryl)methyl]benzene ${ }^{43}$ (38) ($2.00 \mathrm{~g}, 3.74 \mathrm{mmol}$) was then added and the solution was bubbled with N_{2} for 5 min . Perchloric acid (3 mL) was then pipetted in, and the flask was stoppered and shaken vigorously for 1 min and then placed in the dark for $24-48 \mathrm{~h}$. The acid was then neutralized with sodium acetate, and the solvent was removed on a rotary evaporator. The solid residue was taken up in chloroform $(200 \mathrm{~mL})$ and treated with o-chloranil ($2.76 \mathrm{~g}, 0.011 \mathrm{~mol}$). After the solution was stirred for 20 min , solid cupric acetate (1 g) was added, and the mixture was heated at reflux under N_{2} for 1 h . The solution was next filtered through Celite, washed with water ($3 \times 200 \mathrm{~mL}$), dried over MgSO_{4}, concentrated to 30 mL on a rotary evaporator, and then purified by chromatography on silica gel with $\mathrm{CCl}_{4} / \mathrm{CHCl}_{3}(1 / 1 \mathrm{v} / \mathrm{v})$ as the eluent. Three red bands appeared along with trace amounts of monomeric porphyrin byproducts. These bands are in order of elution: $\mathrm{Cu}_{2} \cdot \mathbf{1}$, $\mathrm{Cu}_{2} \cdot 12$, and $\mathrm{Cu}_{2} \cdot 5$. The second red band was collected, concentrated to 200 mL , and placed in a $500-\mathrm{mL}$ separatory funnel. $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$ was added to the funnel which was then stoppered and shaken vigorously for 5 min . The funnel was then allowed to sit for another $2-3 \mathrm{~min}$. Water (100 mL) was next carefully added (Caution! Exothermic!). The funnel was then restoppered and slowly inverted to prevent immediate combination of the water and sulfuric acid layers. After it was vented once, the funnel was shaken and vented several times. The chloroform layer was removed, and the aqueous layer was washed several times with chloroform until colorless. The chloroform layers were combined and made basic with 5% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a stirred $500-\mathrm{mL}$ Erlenmeyer flask. After the neutralization was complete, the chloroform layer was again separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness on a rotary evaporator. The solid so obtained was dissolved in a minimum of chloroform and passed through a $3 \times 50 \mathrm{~cm}$ silica column (1% $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ eluent). The major band was collected and recrystallized from chloroform/hexane to give the product, $\mathrm{H}_{4} \cdot 12$, as a lustrous purple powder, $0.136 \mathrm{~g}(3 \%):{ }^{1} \mathrm{H}$ NMR $\delta-2.95,-3.04(\mathrm{~s}, \mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),-2.13$ (br s, $2 \mathrm{H}, \mathrm{NH}$), 1.24 (t, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.73 (br m, 18 H , $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.27 (sextuplet, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.10$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.8-4.1(\mathrm{~m}, 16$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.15-7.3\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.96$ (s, H, (porph) $)_{2}$-phenyl), $8.29\left(\mathrm{t}, 1 \mathrm{H},(\text { porph })_{2}\right.$-phenyl), $8.8-9.0(\mathrm{~m}, 2 \mathrm{H}$, (porph) 2_{2}-phenyl), 9.81 (s, 1 H , meso), 10.07 (s, 2 H , meso), 10.10 (s, 2 H , meso); ${ }^{13} \mathrm{C}$ NMR $\delta 11.75,13.53,14.47,17.18,17.43,17.54,19.89$, $19.99,26.08,28.38,56.03,95.87,96.51,96.65,111.88,113.61,115.07$, $117.07,118.02,120.20,125.35,131.67,133.45,133.54,134.77,135.16$. $135.55,136.23,139.85,140.53,140.66,140.85,140.95,141.63,143.09$, $143.7,144.35,144.43,144.67,145.18,145.34,145.74,145.90,153.65$, 153.89; FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at I 195-1197 amu (caled for $\mathrm{C}_{80} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+}$1196); UV-vis $\lambda_{\text {max }}$ (log є) $415(5.71), 510(4.71), 540(4.32), 577$ (4.35), 627 (3.78). Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{2}: \mathrm{C}, 80.36 ; \mathrm{H}, 7.59 ; \mathrm{N}, 9.38$. Found: C, 80.26 $\mathrm{H}, 7.70 ; \mathrm{N}, 9.18$. When the first red band of the above preparation (containing $\mathrm{Cu}_{2} \cdot 1$) was demetalated and worked up in the same fashion as for $\mathrm{H}_{4} \cdot 12$, a reddish band appeared on the silica gel column which ran
slightly faster than $\mathrm{H}_{4}, 1$. This reddish band was collected, passed through another silica gel column (CHCl_{3} eluent), concentrated, and recrystallized from $\mathrm{CHCl}_{3} /$ hexane to give $\mathrm{CuH}_{2} \cdot 1(10 \mathrm{mg})$ as a red flocculent solid: FAB HRMS (3-nitrobenzyl alcohol matrix) m / e calcd for C_{74} $\mathrm{H}_{85} \mathrm{~N}_{8} \cdot \mathrm{Cu} 1148.61931$, found 1148.61450 (-4.2 ppm).

1-[5-[2,8,12,18-Tetraethyl-15-(2,5-dimethoxyphenyl)-3,7,13,17-tetramethylporphyrinyl] $]-4$ [5-(13,17-di-n-butyl-2,8-diethyl-3,7.12,18-tetramethylporphyrinyl) Jenzene ($\mathrm{H}_{4} \cdot 13$). Dialdehyde 36 ($2.01 \mathrm{~g}, 4.77 \mathrm{mmol}$) and dialdehyde 33 ($1.16 \mathrm{~g}, 4.77 \mathrm{mmol}$) were dissolved in hot THF (150 mL) in a $1-\mathrm{L}$ round-bottomed flask and the solution was diluted to 900 mL with methanol. The α-free dipyrromethane $40(2.55 \mathrm{~g}, 4.77 \mathrm{mmol})$ was then added, and the solution was bubbled with N_{2} for 5 min . Perchloric acid (10 mL) was then pipetted in, and the flask was stoppered and shaken vigorously for 1 min and placed in the dark for 24-48 h . The reaction mixture was then worked up as described above for the synthesis of $\mathrm{H}_{4} \cdot 12$. In this case, the initial filtration removed undissolved $\mathrm{Cu}_{2} \cdot 2$, and again three bands, corresponding to $\mathrm{Cu}_{2} \cdot 2, \mathrm{Cu}_{2} \cdot 13$, and $\mathrm{Cu}_{2} \cdot 6$, appeared during the subsequent chromatography (silica, $1 / 1 \mathrm{v} / \mathrm{v} \mathrm{CCl}_{4} /$ CHCl_{3} eluent). The second red band was collected, concentrated, passed through another similar column, and demetalated by the procedure given above. Chromatographic purification of the resulting free-base was carried out on a $3 \times 50 \mathrm{~cm}$ silica column ($1 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ eluent). Collection of the major band and recrystallization from chloroform/ hexane gave $\mathrm{H}_{4} \cdot 13$ ($150 \mathrm{mg}, 2.6 \%$) as a lustrous purple powder. Collection of the third major band, followed by demetalation and standard purification also yiclded $140 \mathrm{mg}(2.3 \%)$ of $\mathrm{H}_{4} \cdot 6$. For $\mathrm{H}_{4} \cdot 13$: ${ }^{1} \mathrm{H}$ NMR $\delta-2.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-2.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-1.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-1.97$ (s, $1 \mathrm{H}, \mathrm{NH}), 1.17\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.7-2.0(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.33 ($\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.67 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), $3.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.08\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.16$ (q. $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.29-7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}\right), 8.59$ (dd, 4 H , (porph) $)_{2}$-phenyl), 9.96 (s, 1 H , meso), 10.27 (s, 2 H , meso), 10.33 (s, 2 H , meso): ${ }^{13} \mathrm{C}$ NMR $\delta 11.35,13.17,13.77,16.99,17.16$, 19.61, 19.72, 22.76, 25.88, 34.86, 55.80, 95.42, 96.24, 96.30, 111.89, 113.34. 114.95, $117.51,118.6,120.24,132.0,133.24,133.36,134.91$, $135.34,135.80,139.93,140.48,140.77,141.42,142.23,143.47,143.87$, 144.15, 144.20. 144.81, 145.33, 145.50, 145.85; FAB MS (glycerol, oxalic acid matrix) shows a cluster of peaks centered around 1225 amu (calcd for $\mathrm{C}_{82} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+} 1224$); UV-vis $\lambda_{\text {max }}$ (log є) 416 (5.79), 508 (4.73), 539 (4.24). 575 (4.32), 625 (3.64). Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{2}: \mathrm{C}$, 80.49; H, 7.74: N, 9.16. Found: C, $80.33 ; \mathrm{H}, 7.50 ; \mathrm{N}, 9.17$.

1-[5-[2,8.12.18-Tetraethyl-15-(2,5-dihydroxyphenyl)-3,7,13,17-tetra-methylporphyrinyl]]-3-[5-(2,8-diethyl-3,7,12.18-tetramethyl-13,17-di-npropylporphyrinyl)]benzene (H_{4} 14). The dimethoxy protected gable monohydroquinone $\mathrm{H}_{4} \cdot 12$ ($290 \mathrm{mg}, 0.243 \mathrm{mmol}$) was dissolved in dry dichloromethane (18 mL) in a $50-\mathrm{mL}$ round-bottomed flask equipped with a side arm and a stir bar. Nitrogen was gently blown in through the side arm. $\mathrm{BBr}_{3}(2 \mathrm{~mL})$ was added to the stirred solution. The flask was promptly stoppered, covered with aluminum foil, and stirred for 3 h. The flask was then unwrapped and the contents diluted to 40 mL with dichloromethanc. The excess BBr_{3} was quenched by the cautious dropwise addition of methanol (Caution! Violently Exothermic!), and the solution was then poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \%, 50 \mathrm{~mL})$. After it was stirred for $5-10 \mathrm{~min}$, the organic layer was separated and the aqueous layer further extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$). The organic layers were combined, washed with water ($2 \times 40 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and taken to dryness on a rotary evaporator to give the crude hydroquinone $\mathrm{H}_{4} \cdot 14$, which in general was converted directly to the quinone $\mathrm{H}_{4} \cdot 9$ without further purification (see below). This crude material could, however, be purified by column chromatography on silica gel ($5 \% \mathrm{McOH} / \mathrm{CHCl}_{3}$ cluent), followed by recrystallization from 5% methanolic $\mathrm{CHCl}_{3} /$ hexane to give pure $\mathrm{H}_{4} \cdot 14$ as a purple microcrystalline powder ($175 \mathrm{mg}, 62 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta-2.95$ (br s, $2 \mathrm{H}, \mathrm{NH}$), -2.15 (br s, $2 \mathrm{H}, \mathrm{NH}$), $0.86\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ $1.70\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.26$ (sextuplet, 4 H $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.62 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), 3.07 (s, $12 \mathrm{H}, \mathrm{CH}_{3}$), 3.54 (s. 6 H $\left.\mathrm{CH}_{3}\right), 3.93-4.02\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.15(\mathrm{~s}, 1 \mathrm{H}$ hydroquinone phenyl H-6), $7.89(\mathrm{~s}, 1 \mathrm{H}$, phenyl H-2), $8.28(\mathrm{t}, 1 \mathrm{H}$, phenyl H-5), 8.83 (d, 2 H , hydroquinone phenyl $\mathrm{H}-3, \mathrm{H}-4$), 8.95 (d, 2 H, phenyl H-4 and H-6), 9.80 (s, 1 H , "distal" meso H-15), 10.05 (s, 2 H , "distal" meso $\mathrm{H}-10$ and $\mathrm{H}-20$), 10.14 ($\mathrm{s}, 2 \mathrm{H}$, "proximal" meso $\mathrm{H}-10$ and H-20); ${ }^{13} \mathrm{C}$ NMR $\delta 11.50,13.17,14.23,16.96,17.13,17.17,17.22$, 19.63, 19.78, 25.89, 28.21, 29.53, 95.83, 96.55, 99.23, 109.50, 109.55, $116.48,117.26,117.70,120.02,125.33,127.88,133.35,133.43,134.98$, $135.13,135.99,136.22,139.90,140.11,140.82,141.07,141.82,144.38$, 144.72, $144.85,145.44,145.72,149.20,150.22$ i FAB MS (glycerol/oxalic acid) shows a cluster of peaks at 1166.8-1171.8 amu (calcd for $\mathrm{C}_{78} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+} m / e=1166.7$).

1-[5-[15-[2'-(1', $\mathbf{4}^{\prime}$-Benzoquinony]) $\mathbf{- 2 , 8 , 1 2 , 1 8 - t e t r a e t h y] - 3 , 7 , 1 3 , 1 7 - t e t - ~}$ ramethylporphyrinyl]]-3-[5-(2,8-diethyl-3,7,12,18-tetramethyl-13,17-di-npropylporphyrinyl) bbenzene $\left(\mathrm{H}_{4} \cdot \mathbf{1 0}\right)$. The above hydroquinone $\left(\mathrm{H}_{4} \cdot \mathbf{1 4}\right)$ ($175 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in 30 mL of 1% methanol $/ \mathrm{CHCl}_{3}$ containing a trace of triethylamine (TEA). DDQ ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was then added, the solution was stirred for 5 min , and it was then loaded onto a $2 \times 50 \mathrm{~cm}$ silica gel column and eluted (1% methanol $/ \mathrm{CHCl}_{3}$). The fastest moving dark band was collected and recrystallized, first from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ and then from $\mathrm{CHCl}_{3} /$ hexane, to give the product as a fluffy brown solid (quantitative): ${ }^{1} \mathrm{H}$ NMR $\delta-2.9$ to -3.1 (d, 2 H , pyrrole NH), -2.05 to $-2.2(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, pyrrole NH), $1.26(\mathrm{t}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.77\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.09\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 3.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.99\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.29$ (d, 1 H , quinone H), 7.32 ($\mathrm{br}, 2 \mathrm{H}$, quinone H), $7.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, (porph) 2_{2}-phenyl), $8.29\left(\mathrm{t}, 1 \mathrm{H}\right.$, (porph) 2_{2}-phenyl), 8.95 (d, 2 H , (porph) 2_{2}-phenyl), 9.83 ($\mathrm{s}, 1 \mathrm{H}$, meso), 10.10 (s, 2 H , meso), 10.15 (s, 2 H , meso) ${ }^{13} \mathrm{C}$ NMR $\delta 11.8,14.2,16.2,17.0,17.3,20.0,26.1,28.2,29.7$, $95.9,96.7,97.3,106.2,117.8,118.3,125.4,133.1,133.4,133.5,135.2$, $135.4,136.3,137.2,137.8,139.4,139.9,140.1,141.2,141.3,141.8,142.2$, 143.7, 144.6, $145.0,145.1,145.5,146.0,146.2,150.0,187.1,188.8$; FAB MS (glycerol, oxalic acid matrix) shows a cluster of peaks at 1165.9-1171.9 amu (calcd for $\mathrm{C}_{78} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+} 1165.7$); UV-vis $\lambda_{\text {max }}$ (log є) 415.5 (5.59), 508.5 (4.60), 541 (4.31), 577 (4.24), 628 (3.83). Anal. Calcd for $\mathrm{C}_{78} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 79.15 ; \mathrm{H}, 7.32 ; \mathrm{N}, 9.47$. Found: C , $79.21 ; \mathrm{H}, 7.20 ; \mathrm{N}, 9.37$. For $\mathrm{Zn}_{2} \cdot 10$: UV-vis $\lambda_{\max }(\log \epsilon) 407$ (5.57), 424 (5.52), 543 (4.57), 575 (4.43).

1-[5-[2,8,12,18-Tetraethyl-15-(2,5-dihydroxypheny) 3 -7, 13,17-tetra-methylporphyrinyl]]-4-[5-(13,17-di-n-butyl-2,8-diethyl-3,7,12,18-tetramethylporphyrinyl) benzene $\left(\mathrm{H}_{4}-15\right)$. The dimethoxy protected material $\mathrm{H}_{4} \cdot 13(125 \mathrm{mg}, 0.1 \mathrm{mmol})$ was deprotected by a procedure identical with that used to obtain $\mathrm{H}_{4} \cdot 14$ to give $\mathrm{H}_{4} \cdot 15$ in 76% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.08$ $\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.8-1.9\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.23\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.9-4.2(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.12\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{H} 4\right.$ of $\mathrm{C}_{6} \mathrm{H}_{3}-$ $\left.(\mathrm{OH})_{2}\right), 7.26\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{H} 3\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2}\right), 8.36\left(\mathrm{dd}, 4 \mathrm{H}\right.$, (porph) 2^{-} phenyl), 8.43 (s, 1 H, -H 6 of $\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2}$), 9.87 ($\mathrm{s}, 1 \mathrm{H}$, meso), 10.21 (s, 2 H , meso), 10.30 (s, 2 H , meso); FAB MS (glycerol/oxalic acid matrix) shows a cluster of peaks from 1195-1198 amu (calcd for $\mathrm{C}_{80} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+}$1195).

1-[5-[15-[2'-($1^{\prime}, 4^{\prime}$-Benzoquinonyl)]-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrinyl]]-4-[5-(13,17-di-n-butyl-2,8-diethyl-3,7,12,18tetramethylporphyrinyl)]benzene $\left(\mathrm{H}_{4} \cdot 11\right)$. The hydroquinone $\mathrm{H}_{4} \cdot 15$ was oxidized to the quinone $\mathrm{H}_{4} \cdot 11$ in near quantitative yield by the same procedure used to prepare $\mathrm{H}_{4} \cdot 10$: ${ }^{1} \mathrm{H}$ NMR $\delta-2.7$ to $-3.0(\mathrm{~d}, 2 \mathrm{H}$, pyrrole NH), -1.85 to -2.05 (br s, 2 H , pyrrole NH), 1.16 (t, 6 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.95(\mathrm{~m}, 18 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.19\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), $4.0-4.2\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.3-7.4 (m, 3 H , quinone H), 8.45 (dd, 4 H , (porph) ${ }_{2}$-phenyl), 9.95 (s , 1 H , meso), 10.26 (s, 2 H , meso), 10.34 (s, 2 H , meso) ${ }^{13}{ }^{3} \mathrm{C}$ NMR $\delta 11.8$, $14.2,16.3,17.4,17.6,17.7,17.8,20.0,20.1,23.1,26.2,35.3,96.8,97.5$, $106.4,118.8,119.3,125.5,128.2,133.3,133.4,133.5,133.9,134.0,135.6$, $136.0,136.3,137.2,137.9,139.5,140.4,141.2,141.3,141.7,141.8,142.8$, $143.8,144.7,144.9,145.0,145.7,146.1,150.0,187.3,189.0 ;$ FAB MS (glycerol/oxalic acid matrix) shows a cluster of peaks from 1192.6-1 199.6 amu (calcd for $\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot \mathrm{H}^{+} 1192.7$); UV-vis $\lambda_{\text {max }}$ (\log є) 414.5 (5.60), 507 (4.58), 539 (4.24), 573 (4.23), 624 (3.93). Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{2}: \mathrm{C}, 80.5 ; \mathrm{H}, 7.43 ; \mathrm{N}, 9.39$. Found: C, 80.32; H, 7.43; $\mathrm{N}, 9.09$. For $\mathrm{Zn}_{2} \cdot 11$: UV-vis $\lambda_{\text {max }}$ ($\left.\log \varepsilon\right) 412$ sh (5.52), 423 (5.69), 542 (4.66), 574 (4.40).

Monometalations. $\mathbf{Z n H}_{2} \cdot \mathbf{1}$. 1,3-Bis[5-(2,8-Diethyl-3,7,12,18-tetra-methyl-13,17-di-n-propylporphyrinyl)]benzene $\left(\mathrm{H}_{4} \cdot 1\right)$ ($11 \mathrm{mg}, 0.010$ mmol) was dissolved in 30 mL of CHCl_{3} in a $50-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirring bar. Aliquots ($10-\mathrm{mL}$ each) of a 0.0055 M solution of zinc acetate in methanol were then added with efficient stirring. The course of the reaction was monitored by TLC (silica gel, developing with $2 \% \mathrm{MeOH}$ in CHCl_{3}) after each addition. When approximately 1.3 equiv of Zn^{2+} had been added, TLC indicated the absence of appreciable starting material and the presence of two new spots. The faster moving of these $\left(R_{f}=0.72\right)$ corresponds to $\mathrm{Zn}_{2} \cdot 1$; the other to $\mathrm{ZnH}_{2} \cdot 1$ ($R_{f}=0.44$). Unfortunately, the monozinc complex moves only slightly faster on TLC than the starting free-base ($R_{f}=0.42$). Chromatographic purification on a $1 \mathrm{~cm} \times 25 \mathrm{~cm}$ column (silica gel CHCl_{3} eluent) followed by recrystallization from $\mathrm{CHCl}_{3} /$ hexanes thus gave $\mathrm{ZnH}_{2} \cdot 1$ ($4 \mathrm{mg}, 34 \%$) contaminated with a small amount of $\mathrm{H}_{4} \cdot 1$ Pure $\mathrm{ZnH}_{2} \cdot 1$ could only be obtained after several repeated chromatog. raphy and recrystallization cycles. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of $\mathrm{H}_{4} \cdot 1$, except for a reduced integral value for the internal protons at ca. $\mathbf{- 3} \mathrm{ppm}$: FAB MS (3-nitrobenzyl alcohol matrix) shows
a cluster of peaks at $1148-1153 \mathrm{amu}$ (calcd for $\mathrm{C}_{94} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{Zn} \cdot \mathrm{H}^{+} 1149$ and 1151); UV-vis $\lambda_{\text {max }}(\log \epsilon) 407.5$ (5.61), 417 (5.60), 506.5 (4.36), 540.5 (4.44), 574.5 (4.35), 627 (3.50)
$\mathbf{Z n H} \mathbf{n}^{-2}$. This complex was obtained from $\mathrm{H}_{4} \cdot \mathbf{2}$ in 38% yield by the procedure described above for the preparation of $\mathrm{ZnH}_{2} \cdot 1$. Again, the monozinc complex ($R_{f}=0.42$) moved considerably more slowly than the bis-zinc complex ($R_{f}=0.84$) but only slightly faster on TLC (silica gel, developing with $1 \% \mathrm{McOH}$ in CHCl_{3}) than the free-base ($R_{f}=0.39$). As a resull, scveral chromalographic purification (silica gel, CHCl_{3}, eluent) and recrystallization (from $\mathrm{CHCl}_{3} /$ hexanes) cycles were again required to remove the last traces of the starting free-base porphyrin. The ${ }^{1} \mathrm{H}$ NMR spectrum (see discussion in text) was similar to that of $\mathrm{H}_{4} \cdot \mathbf{2}$, except for the reduced integral value in the internal pyrrole region: FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1205-1 208 amu (calcd for $\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{Zn} \cdot \mathrm{H}^{+} 1205$ and 1207); UV-vis $\lambda_{\text {max }}$ (\log t) 417 (5.60), 508 (4.27), 539 (4.42), 575 (4.24).
$\mathrm{ZnH}_{2} \cdot 3$. This complex was obtained in impure form from $\mathrm{H}_{4} \cdot 3$ by a procedure identical with that described above for the preparation of $\mathrm{ZnH}_{2} \cdot 1$. In this case, however, the desired monozinc complex ($R_{f}=$ 0.38), the bis-zinc complex ($R_{f}=0.55$) and starting free-base ($R_{f}=0.37$) were nol well scparated on TLC (silica gel, developing with $1 \% \mathrm{MeOH}$ in CHCl_{3}). As a result, chromatographic purification (silica gel, CHCl_{3}, eluent) and recrystallization (from $\mathrm{CHCl}_{3} /$ hexanes) served only to remove the bis-zinc complex; the sample of $\mathrm{ZnH}_{2} \cdot 3$ used for NMR studies (c.f. Figure 10) was estimated to contain ca. $20 \% \mathrm{H}_{4} \cdot 3$ as an impurity: FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1308-1313 amu (calcd for $\mathrm{C}_{82} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn} \cdot \mathrm{H}^{+} 1305$ and 1307), as well as at $1247-1251 \mathrm{amu}$ corresponding to the free base $\mathrm{H}_{4} \cdot 3$.
$\mathrm{ZnH}_{2} \cdot 10$. This complex was obtained directly from $\mathrm{H}_{4} \cdot 10$ by a modification of the procedure described above for the preparation of $\mathrm{ZnH}_{2} \cdot 1$: The slarting free-base porphyrin ($100 \mathrm{mg}, 0.086 \mathrm{mmol}$) was dissolved in 400 mL of pure CHCl_{3} and titrated with $0.1-\mathrm{mL}$ aliquots of a 0.0055 M solution of zinc acctate with good stirring. After the addition of roughly 1.3 equiv, TLC (silica gel, developing with $2 \% \mathrm{MeOH}$ in CHCl_{3}) indicated an approximately $1: 1$ mixture of $\mathrm{ZnH}_{2} \cdot 10\left(R_{f}=0.65\right)$ and $\mathrm{Zn}_{2} \cdot 10$ ($R_{f}=0.94$) and very little remaining $\mathrm{H}_{4} \cdot 10\left(R_{f}=0.51\right)$. After the material was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, chromatographic purification (silica gel, CHCl_{3}, eluent) and recrystallization (from $\mathrm{CHCl}_{3} /$ hexanes) gave pure $\mathrm{ZnH}_{2} \cdot \mathbf{1 0}(38 \mathrm{mg}, 36 \%)$ uncontaminated with either the starting frec-base or bis-zinc compounds. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of $\mathrm{H}_{4} \cdot 10$, with the exception of the internal pyrrole region (see discussion in results section): FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1228-1235 amu (calcd for $\mathrm{C}_{78} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}^{+} 1227$ and 1229); UV-vis $\lambda_{\text {max }}(\log \epsilon) 408(5.51), 419$ (5.50), 509 (4.37), 542 (4.45), 576 (4.33).
$\mathrm{ZnH}_{2} \cdot 11$. This complex was obtained from $\mathrm{H}_{4} \cdot 11$ in 48% yield by using the same procedure used to prepare $\mathrm{ZnH}_{2} \cdot 10$ from $\mathrm{H}_{4} \cdot 10$. Again the monozinc complex ($R_{f}=0.75$) was well separated on TLC (silica gel, developing with $1 \% \mathrm{MeOH}$ in CHCl_{3}) from the bis-zinc complex ($R_{f}=$ 0.87) and starting free-base ($R_{f}=0.64$) porphyrin and could be readily purified by chromatography on silica gel (CHCl_{3}, eluent), followed by recrystallization (from $\mathrm{CHCl}_{3} /$ hexanes). The ${ }^{1} \mathrm{H} N M R$ spectrum was similar to that of $\mathrm{H}_{4} \cdot 11$, with the exception of the internal pyrrole region as mentioned in the results section: FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1255-1262 amu (calcd for $\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}^{+} 1255$ and 1257); UV-vis $\lambda_{\text {max }}(\log \epsilon) 417$ (5.62), 509 (4.31), 539 (4.40), 573 (4.29).
$\mathrm{H}_{2} \mathrm{Zn} \cdot 10$. The starting free-base hydroquinone porphyrin $\mathrm{H}_{4} \cdot 14$ (100 $\mathrm{mg}, 0.086 \mathrm{mmol}$) was dissolved in 400 mL pure CHCl_{3} and titrated with $0.1-\mathrm{mL}$ aliquots of 0.0055 M zinc acetate with good stirring. After the addition of roughly 1.3 equiv, TLC (silica gel, developing with $2 \% \mathrm{MeOH}$ in CHCl_{3}) indicated an approximately $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{Zn} \cdot 14\left(R_{f}=\right.$ $0.33)$ and $\mathrm{Zn}_{2} \cdot 14\left(R_{f}=0.97\right)$ and very little remaining $\mathrm{H}_{4} \cdot 14\left(R_{f}=0.26\right)$. Following an aqueous workup, chromatographic purification (silica gel, CHCl_{3}, eluent) gave moderately pure $\mathrm{ZnH}_{2} \cdot 14$ contaminated with a trace of starting free-base $\mathrm{H}_{4} \cdot 14$. This crude product was not isolated but was immediatcly dissolved in 30 mL of 1% methanol/ CHCl_{3} containing a trace of TEA and oxidized with DDQ ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$). After the solution was stirred for 5 min , it was loaded onto a $5 \times 100 \mathrm{~cm}$ silica gel column and eluted with pure CHCl_{3}. The slowest moving dark band was collected and recrystallized from $\mathrm{CHCl}_{3} /$ hexane to give $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ as a fluffy brown solid ($45 \mathrm{mg}, 43 \%$). Interestingly, this monometalated product ($R_{f}=0.45$) moves slower on TLC (silica gel, $2 \% \mathrm{MeOH}$ in $\left.\mathrm{CHCl}_{3}\right)$ than either the free-base quinone $\mathrm{H}_{4} \cdot 10\left(R_{f}=0.51\right)$ or is chelate $\mathrm{ZnH}_{2} \cdot 10\left(R_{f}=0.65\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of $\mathrm{H}_{4} \cdot \mathbf{1 0}$, with the exception of the internal pyrrole region (see discussion in results section): FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1223-1230 amu (calcd for $\mathrm{C}_{78} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}^{+} 1227$ and 1229); UV-vis $\lambda_{\text {max }}$ (log $\epsilon 410$ (5.48), $422(5.52), 507$ (4.36), 543 (4.43), 577 (4.30).
$\mathrm{H}_{2} \mathrm{Zn} \cdot 11$. This complex was obtained from $\mathrm{H}_{4} \cdot 15$ in 45% yield by the same procedure used to prepare $\mathrm{H}_{2} \mathrm{Zn} \cdot 10$ from $\mathrm{H}_{4} \cdot 14$. Again, the final monometalated quinone product $\mathrm{H}_{2} \mathrm{Zn} \cdot 11$ migrates slower on TLC $\left(R_{f}\right.$ $=0.53$, silica gel, $\left.2 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ than the free-base $\mathrm{H}_{4} \cdot 11\left(R_{f}=\right.$ 0.64) or the isomeric complex $\mathrm{ZnH}_{2} \cdot 11$ ($R_{f}=0.75$). The ${ }^{1} \mathrm{H} N \mathrm{NMR}$ spectrum was similar to that of $\mathrm{H}_{4} \cdot 10$, with the exception of the internal pyrrole region (see above): FAB MS (3-nitrobenzyl alcohol matrix) shows a cluster of peaks at 1253-1258 amu (calcd for $\mathrm{C}_{80} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn} \cdot \mathrm{H}^{+}$ 1255 and 1257); UV-vis $\lambda_{\text {max }}(\log \epsilon) 420(5.61), 507$ (4.34), $540(4.44)$, 572 (4.30), 624 (3.86).

Acknowledgment. This work was supported by the Robert A. Welch Foundation (Grant F-1018 to J.L.S.), the National Science Foundation (PYI Award, 1986 to J.L.S.), and the National Institutes of Health (Grant No. HL 13157 to J.A.I. and Grant No. GM 41657 to J.L.S.). We thank Profs. M. Momenteau and F. A. Walker for their help in interpreting the temperature dependent ${ }^{1}$ H NMR spectra, Azadeh Mozaffari for synthetic assistance, and Prof. J.-P. Sauvage for sharing results prior to publication.

Supplementary Material Available: Synthetic details for the preparation of precursors 24-33, 41, and 42, tables of selected bond distances and angles, positional and isotropic thermal parameters for hydrogen atoms, and positional and equivalent isotropic thermal parameters for non-hydrogen atoms for $\mathrm{H}_{2} \cdot \mathbf{2 0}$, $\mathrm{Cu}_{2} \cdot 5$, and $\mathrm{Cu}_{2} \cdot 9$, table of mean lifetimes for the bridging phenyl protons for $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$, temperature-dependent proton NMR spectra for compounds $\mathrm{H}_{4} \cdot 11$ and $\mathrm{H}_{4} \cdot 13$, and Arrhenius plots for proton exchange in compounds $\mathrm{H}_{4} \cdot 6$ and $\mathrm{H}_{4} .4$ (46 pages); tables of structure factors ($10\left|F_{0}\right|$ vs $10\left|F_{\mathrm{c}}\right|$) for $\mathrm{H}_{2} \cdot \mathbf{2 0}, \mathrm{Cu}_{2} \cdot \mathbf{5}$, and $\mathrm{Cu}_{2} \cdot 9$ (105 pages). Ordering information is given on any current masthead page.

[^0]: University of Tcxas at Austin.
 ${ }^{1}$ Northwestern University.

[^1]: (14) (a) Bixon, M.; Jortner, J.; Michel-Beyerle, M. E.; Ogrodnik, A.; Lersch, W. Chem. Phys. Lett. 1987, 140, 626-630. (b) Michel-Beyerle, M. E.; Bixon, M.: Jortner, J, Chem. Phys. Lett. 1988, 151, 188-194. (c) Plato, M.; Möbius, K.; Michel-Beyerle, M. E.; Bixon, M.; Jortner, J. J. Am. Chem. Soc. 1988, 110, 7279-7285. (d) Bixon, M.; Jortner, J. Chem. Phys. Lett. 1989, /59, 17-20. (e) Boxer, S. G.; Goldstein, R. A.; Lockhart, D. J.; Middendorf, T. R.; Takiff, L. J. Phys. Chem. 1989, 93, 8280-8294.
 (15) (a) Won. Y.; Friesner, R. A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5511-5515. (b) Won, Y.; Friesner, R. A. Biochim. Biophys. Acta 1988, 935, 9-18. (c) Friesner. R. A.; Won, Y. Biochim. Biophys. Acta 1989, 977. 99-122.
 (16) For recent reviews, sec: (a) Wasielewski, M. R. Photochem. Photobiol. 1988, 47, 923-929. (b) Gust, D.; Moore, T. A. Science 1989, 244, 35-41. (c) Connolly, J. S.; Bolton, J. R. In Photoinduced Electron Transfers; Fox, M. A., Channon, M., Eds.; Elsevier: Amsterdam, 1988; Part D, Chapter 6.2, pp 303-393. For reviews of carlier work, see: (a) Fendler, J. H. J. Phys. Chem. 1985. 89. 2730-2740. (b) Boxer, S. G. Biochim. Biophys. Acta 1983, 726, 265-292. See also: Tetrahedron 1989, 45 (15) (a special "Symposium in Print" issue devoted to the topic of covalently linked donor-acceptor photosynthetic model systems, Gust, D., Moore, T. A., Eds.).
 (17) (a) Miller, J. R.; Calcaterra, L. T.; Closs, G. L. J. Am. Chem. Soc. 1984, I06, 3047-3049. (b) Miller, J. R.; Beitz, J. V.; Huddleston, R. K. J Am. Chem. Soc. 1984, 106, 5057-5068. (c) Closs, G. L.; Calcaterra, T. L.; Gree, N. J.; Penfield, K. W.; Miller, J. R. J. Phys. Chem. 1986, 90 , 3673-3683. (d) Penfield, K. W.; Miller, J. R.; Paddon-Row, M. N.; Cotsaris, E.; Oliver, A. M.: Hush, N. S. J. Am. Chem. Soc. 1987, 109, 5061-5065. (e) Closs, G. L.; Piotrowiak, P.; Maclnnis, J. M.; Fleming, G. R. J. Am. Chem. Soc. 1988, I10, 2652-2653. (f) Closs, G. L.; Miller, J. R. Science 1988, 240, 440-447. (g) Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem. Soc. 1989, 111, 3751-3753. (h) Johnson, M. D.; Miller, J. R.; Green, N. S.; Closs, G. L. J. Phys. Chem. 1989, 93, 1173-1176.

[^2]: (26) (a) Sanders, G. M.; van Dijk, M.; van Veldhuizen, A.; van der Plas, H. C.; Koning, G. P. Recueil 1985, 104(9), 243-244. (b) Sanders, G. M.; van Dijk, M.; van Veldhuizen, A.; van der Plas, H. J. Chem. Soc., Chem. Commun. 1986, 1311-1313.
 (27) (a) Sicmiarczuk, A.; McIntosh, A. R.; Ho, T.-F.; Stillman, M. J.; Roach, K. J.; Weedon, A. C.; Bolton, J. R.; Connolly, J. S. J. Am. Chem. Soc. 1983, 105, 7224-7230. (b) Schmidt, J. A.; Siemiarczuk, A.; Weedon, A. C.; Bolton, J. R. J. Am. Chem. Soc. 1985, 107, 6112-6114. (c) Hofstra, U.; Schaafsma, T. J.; Sanders, G. M.; Van Dijk, M.; Van der Plas, H. C.; Johnson, D. G.; Wasielewski, M. R. Chem. Phys. Lett. 1988, 15l, 169-175. (d) Schmidt, J. A.: McIntosh, A. R.; Weedon, A. C.; Bolton, J. R.; Connolly, J. S.; Hurley, J.: K.; Wasielewski, M. R. J. Am. Chem. Soc. 1988, llo, 1733-1740 and references cited therein.
 (28) (a) Migita, M.; Okada, T.; Mataga, N.; Nishitani, S.; Kurata, N.; Sakata, Y.; Misumi, S. Chem. Phys. Lett. 1981, 84, 263-266. (b) Mataga, N.; Karen, A.; Okada, T.; Nishitani, S.; Kurata, Sakata, Y.; Misumi, S. J. Phys. Chem. 1984, 88, 5138-5141. (c) Baumannn, W.; Frohling, J.-C.; Brittinger, C.; Okada, T.; Mataga, N. Ber. Bunsenges. Phys. Chem. 1988, 92, 700-706. (d) Sakata, Y.; Nakashima, S.; Goto. Y.; Tatemitsu, H.; Misumi, S.; Asahi, T.; Hagihara. M.; Nishikawa, S.; Okada, T.: Mataga, N. J. Am. Chem. Soc. 1989, 1Il, 8979-8981.
 (29) (a) Wasieliewski, M. R.; Niemczyk, M. P. J. Am. Chem. Soc. 1984, 106, 5043-5045. (b) Wasieliewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B. J. Am. Chem. Soc. 1985, 107, 1080-1082. (c) Wasielewski, M. R.: Johnson. D. G.: Svee, W. A.: Kersey. K. M.: Minsek, D. W. J. Am. Chem. Soc. 1988, llo. 7219-7221.
 (30) (a) Moore. T. A.: Gust, D.; Mathis, P.; Mialocq, J.-C.; Chachaty, C.; Bensasson, R. V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W. R.; Nemeth, G. A.: Moore, A. L. Nature (London) 1984, 307, 630-632. (b) Liddell, P. A.: Barrelt, D.: Makings, L. R.; Pessiki, P. J.; Gusı, D.; Moore, T. A. J. Am. Chem. Soc. 1986, 108, 5350-5352. (c) Gust, D.; Moore. T. A.: Moore, A. 1..: Barrelt. D.; Harding, L. O.; Makings. L. R.; Liddell. P. A.; De Schryver, F. C.: Van der Auwcraer, M.; Bensasson, R. V.: Rougee, M. J. Am Chem. Soc. 1988. 110. 321-323. See also ref. 16b.

[^3]: (48) Supplementary material.

[^4]: ${ }^{a}$ The dimers are "strung" together in the order Ph1-Porl-Br-Por2Ph 2 , where $\mathrm{Ph}=$ terminal phenyl ring, $\mathrm{Por}=$ porphyrin group, and Br $=$ phenyl bridge.

[^5]: (49) The observed coupling constant of $7-8 \mathrm{~Hz}$ for both $\mathrm{H}_{4} \cdot 4$ and $\mathrm{H}_{4} \cdot 6$ is consistent with ortho splitting in a benzene ring: Rahman, A. Nuclear Magnetic Resonance: Basic Principles; Springer-Verlag: New York, 1986.

[^6]: (50) Young, R.; Chang, C. K. J. Am. Chem. Soc. 1985, 107, 898-909.
 (51) Walker, F. A. Tetrahedron Lett. 1971, 4949-4952.
 (52) Gottwald, L. K.; Ullman, E. F. Tetrahedron Lett. 1969, 3071-3074.
 (53) (a) Eaton, S. S.; Eaton, G. R, J. Am. Chem. Soc. 1977, 99 6594-6599. (b) Eaton, S. S.; Eaton, G. R. J. Am. Chem. Soc. 1975, 97, 3660-3666.

[^7]: (54) The spectra in Figures 12 and 13 have been published previously. ${ }^{36}$ However, an error in draftmanship led these figures to be plotted in such a way that the wavelength (x axis) ended up in both cases being displaced incorrectly by roughly 50 nm .
 (55) Won, Y.; Friesner, R. A.; Johnson, M. R.; Sessler, J. L. Photosynth. Res. 1989, 22, 201-210.

[^8]: (56) Furhop, J. H.; Kadish, K. M.; Davis, D. G. J. Am. Chem. Soc. 1973 95, 5140-5147
 (57) Kadish, K. M.; Cornillan, J. L.; Yao, C. L.; Malinski, T.; Gritzner G. J. Electroanalytical. Chem. 1987, 235, 189-207.

[^9]: (61) Kambe, S.; Yasuda, H. Bull. Chem. Soc. Jpn. 1968, 4l, 1444-1446.
 (62) Tindall, J. B. Ind. Eng. Chem. 1941. 33, 65.

